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ASSIGNMENTS

LESSON IX

Numerical Differentiation and Numerical Integration

1. Based on the data-set
i 0 1 2 3 4

xi 1.2 1.3 1.4 1.5 1.6
f(xi) 1.5095 1.6984 1.9043 2.1293 2.3756

compute approximately f ′(1.4) and f ′′(1.4). The obtained results
compare with exact ones, i.e. f ′(1.4) = ch(1.4) ∼= 2.1509 and
f ′′(1.4) = sh(11.4) ∼= 1.9043.

Hint: Use first Newton’s interpolation polynomial, i.e.

P4(x) = f0 + p∆f0 +
p(p− 1)

2!
∆2f0 +

p(p− 1)(p− 2)
3!

∆3f0

+
p(p− 1)(p− 2)(p− 3)

4!
∆4f0,

where p =
x− x0

h
. Taking f ≈ P4(x), we have P ′4(x) =

dP4

dp
dp
dx

, and

because

P4(x) = f0 + p∆f0 +
p2 − p

2
∆2f0 +

p3 − 3p2 + 2p
6

∆3f0

+
p4 − 6p3 + 11p2 − 6p

24
∆4f0,

1
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P ′4(x) =
1
h

(∆f0 +
2p− 1

2
∆2f0 +

3p2 − 6p + 2
6

∆3f0

+
4p3 − 18p2 + 22p− 6

24
∆4f0),

and by further differentiation

P ′′4 (x) =
1
h2 (∆2f0 + (p− 1)∆3f0 +

6p2 − 18p + 11
12

∆4f0).

Now, based on table of differences

k xk fk ∆fk ∆2fk ∆3fk ∆4fk

0 1.2 1.5095
0.1889

1 1.3 1.6984 0.0170
0.2059 0.0021

2 1.4 1.9043 0.0191 0.0001
0.2250 0.0022

3 1.5 2.1293 0.0213
0.2463

4 1.6 2.3756

and taking x = x2 = 1.4, p = x2−x0
h = 1.4−1.2

0.1 = 2,

f ′(1.4) ∼= P ′4(1.4) =
1

0.1
(0.1889 +

3
2
0.0170 +

1
3
0.0021− 1

12
0.0001) ∼= 2.1509

f ′′(1.4) ∼=
1
h2 (0.0170 + 0.0021− 1

12
0.0001) ∼= 1.9092.

2. Using data-set from the previous problem, compute f ′(1.4)
and f ′′(1.4) by approximating the function f by Newton’s
second polynomial and Gauss’ polynomials of first and sec-
ond kind. Compare the results.

3. Based on data table
x 2.1 2.2 2.3 2.4

f(x) 5.1519 5.6285 6.1229 6.6355
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compute approximately f ′(2.4) and f ′′(2.4). Compare the
obtained results with exact values rounded to four digits,
i.e. f ′(2.4) ∼= 5.2167, f ′′(2.4) ∼= 1.8264. Use second Newton’s
polynomial of fourth degree.
In spite of not being convenient, use also first Newton’s

polynomial. Compare the results with exact one’s and also
with approximated by Newton’s polynomial.

4. Based on approximation of data given in previous table, by
Gauss’ polynomials of first and second kind, find f ′(2.4) and
f ′′(2.4). Compare the obtained results with exact ones, and
with each other.

5. Develop the formulas for first five derivatives of Newton’s
first and second approximation polynomials.
Hint: Take

f0 = f0 +
(

p
1

)

∆f0 +
(

p
2

)

∆2f0 +
(

p
3

)

∆3f0 + · · ·

fp = f0 +
(

p
1

)

∆f−1 +
(

p + 1
2

)

∆2f−2 +
(

p + 2
3

)

∆3f−3 + · · · ,

as first and second Newton’s formula, where p =
x− x0

h
.

6. Develop the formula for approximation of first five deriva-
tives using Sterling’s approximation polynomial.

7. Develop the formula for approximation of first five deriva-
tives using Bessel’s approximation polynomial.

8. Develop the generalized trapezoidal integration formula.

9. Using the data-set given in tabular form and containing
values of

√
x, compute

1.30
∫

1.00

√
x dx.
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x 1.0 1.05 1.10 1.15 1.20 1.25 1.30√
x 1.00000 1.02470 1.04881 1.07238 1.09544 1.11803 1.14017

Compare with exact result.

10. Using trapezoidal, Simpson’s, and Newton-Cotes’ formula
with n = 6, compute

∫

sin x dx between 0 and π/2 based on
values from the following table.

x 0. π/12 2π/12 3π/12 4π/12 5π/12 π/2
sin x 0.00000 0.25882 0.50000 0.70711 0.86603 0.96593 1.00000

Compare the results with exact value.

11. Apply the Simpson’s integration rule to compute

π/2
∫

0

sin x dx

taking h = π/8 and halving it up to π/2048. Compare the
results with exact one.

12. Apply the Romberg’s integration rule to the previous prob-
lem.

13. Compute the integral of error-function

H(x) =
2√
π

x
∫

0

e−t2 dt

for x = 0.5 and x = 1, using Taylor’s series.
Hint: Use series

e−t2 = 1− t2 +
t4

2
− t6

6
+

t8

24
− t10

120
+ · · · ,

i.e.
H(x) =

2√
π

[x− x3

3
+

x5

10
− x7

42
+

x9

216
− x11

1320
+ · · ·].
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14. Use different Newton-Cotes’ formulas to compute the inte-
gral

I =

b
∫

a

f(x) dx

of function given in tabular form

x 1.0 1.2 1.4 1.6 1.8 2.0
f(x) 1.0000 0.8333 0.7143 0.6250 0.5556 0.5000

with a = 1, b = 2. Compare the results with exact one, i.e.

2
∫

1

1
x

dx = ln x
∣

∣

2
1 = ln 2 = 0.6931

15. The table in previous problem is accomplished with new
values

x 1.1 1.3 1.5 1.7 1.9
f(x) 0.9091 0.7692 0.6667 0.5882 0.5263

Applying the trapezoidal formula to this set of data form
the Romberg’s integration rule and compare with exact re-
sult.

16. How long should be interval of integration h, so that the
value of ln 2, as in Problem 14, would be computed with
eight exact digits ?

17. Using different Newton-Cotes’ formulas, compute
2
∫

0
y(x) dx,

based on data from the following table.

x 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
y(x) 1.000 1.284 1.649 2.117 2.718 3.490 4.482 5.755 7.389
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Compare the results with exact result for y(x) = ex,

5
∫

1

y(x) dx = e2 − 1 = 6.389

18. Compute
5
∫

1
y(x) dx based on data-set given in the following

table

x 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
y(x) 0.00 0.41 0.69 0.92 1.10 1.25 1.39 1.5 1.61

using Newton-Cotes’ formulas with n = 1(1)4. The exact
result is (y(x) = log x),

5
∫

0

log x dx = x(lnx− 1)
∣

∣

5
0 = 5(ln 5− 1) = 4.05

19. Compute
5
∫

1

dx
1 + x2 by Newton-Cotes’ formulas with n = 3(1)6,

with seven digits of exactness. Exact result is π/4 or
0.7853982.

20. Compute
π/2
∫

2

√

1− 1
4 sin2 t dt with exact four digits. This

integral is of elliptic type, with exact result 1.4675. Use
Romberg integration.

21. Compute the integral

π/2
∫

0

dx
sin2 x + 1

4 cos2 x
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using Newton-Cotes’ formulas of degree n = 1(1)4 and h =
π
4

(
1
4
)

π
1024

. Compare the obtained results with exact one, π.

22. Compute
1
∫

0
e−x3

dx with six exact digits using arbitrary

method. Compare the result with one obtained by pro-
gram Mathematica.

23. * Define the coefficients A1, A2, A3 so that quadrature for-
mula

b
∫

a

f(x) dx = A1 · f(x1) + A2 · f(x2) + A3f(x3) + R3(f)

is exact for all algebraic polynomials of degree k ≤ 2, when
1. (a, b) = (−1, 1), x1 = −1, x2 = − 1

3 , x3 = 1
3 ;

2. (a, b) = (−1, 1), x1 = −
√

3
5 , x2 = 0, x3 =

√

3
5 ;

3. (a, b) = (0, 1), x1 = −2, x2 = −1, x3 = 0.

Hint: By putting R3(xk) = 0 (k = 0, 1, 2), one gets the system

A1 + A2 + A3 = m0

A1x1 + A2x2 + A3x3 = m1

A1x2
1 + A2x2

2 + A3x2
3 = m2

where

mk =

b
∫

a

xk dx =
1

k + 1
(bk+1 − ak+1),

with solutions

A1 =
x2x3m0 − (x2 + x3)m1 + m2

(x1 − x2)(x1 − x3)
,

A2 =
x1x3m0 − (x1 + x3)m1 + m2

(x2 − x1)(x2 − x3)
,

A3 =
x1x2m0 − (x1 + x2)m1 + m2

(x3 − x1)(x3 − x2)
,
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By replacing values from 1., 2., 3., we get the integration for-
mulas. Make a procedure for this type of integration formulas
for arbitrary degree of exactness using program Mathematica.

24. Write a code in Mathematica for obtaining the coefficients
Ak (k = 1, 2, 3, 4) in quadrature formula

1
∫

−1

f(x) dx = A1 · f(−1) + A2 · f(1) + A3f ′(−1) + A4f ′(1) + R(f)

with maximal possible algebraic degree of exactness.

Hint: In order to obtain four unknown coefficients, we take
f(x) = 1, x, x2, x3 and get the system

A1 + A2 = 2
−A1 + A2 + A3 + A4 = 0
A1 + A2 + −2A3 + 2A4 = 2

3
A1 + A2 + 3A3 + 3A4 = 0

By solving previous system we get A1 = A2 = 1, A3 = −A4 = 1
3 ,

so that one gets a formula

1
∫

−1

f(x) dx = f(−1) + f(1)− 1
3
(f ′(1)− f ′(−1)) + R(f)

This formula has an algebraic degree of exactness p = 3 (R(x4) =
16
15
6= 0).

25. The integral
b

∫

a

f(x) dx

is to be estimated by a quadratic-type rule, using three base
points, x1, x2 and x3, that are not necessarily equally spaced
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and none of which necessarily coincides with a or b. Derive
the appropriate integration formula and its associated error
term. Check that the formula reduces to Simpson’s rule
when x1 = a, x3 = b, and (x2−x1) = (x3−x2) = h. Proceed the
calculation by hand and by program Mathematica.
Hint: See problem 23.

26. (*) Consider the computation of the integral
∫ b

a f(x) dx using
Simpson’s rule

x2
∫

x0

f(x) dx =
h
3
[f(x0) + 4f(x1) + f(x2)]−

h5

90
f (IV )(ξ)

repeatedly, each time halving the interval h. This is equiv-
alent to the composite Simpson’s rule

b
∫

a

f(x) dx =
b− a
6n

[f(a) + f(b) + 2
n−1
∑

i=1

f(a +
b− a

n
i)

+ 4
2n−1
∑

i=1
∆i=2

f(a +
b− a
2n

i)]− (b− a)5

2880n4 f (IV )(ξ),

(a < ξ < b)

,

for n = 1, 2, 4, 8, 16, . . ..
Let j be the number of interval halving operations. Then

n and j are related by n = 2j. Let Ij be the estimate of the
integral for j repeated interval halving, and I∗j be the improved
estimate

I∗j =
16
15

Ij −
1
15

Ij−1,

using Richardson extrapolation, based on composite trape-
zoidal rule

I∗ = In1 +
In2 − In1

1−
[n1

n2

]4 , for n2 = 2n1,
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write a function (or procedure) in Fortran/Mathematica named
SIMPRH (A,B,F,EPS,JMAX,J), where A and B are integration
boundaries, F the name of integrated function, f(x).

The procedure should obtain I∗j , (j = 0, 1, 2, . . .) until j >JMAX
or |I∗j − Ij | <EPS.

Thus EPS may be considered to be tolerance on the esti-
mated error. The number of interval-halving steps carried out
should be stored in J upon exit.

27. (*) A semi-infinite medium (x ≥ 0) has a thermal diffu-
sivity α and a zero initial temperature at time t = 0. For
t > 0 the surface at x = 0 is maintained at a temperature
Ts = Ts(t). By using the Duhamel’s theorem (H.S. Carslaw
and J.C. Jaeger, Conduction of Heat in Solids, 2nd ed., Ox-
ford University Press, London, 1959, p.62), the subsequent
temperature T (x, t) inside the medium can be shown to be
given by

T (x, t) =
x

2
√

πα

t
∫

0

Ts(λ)
e
−

x2

4α(t− λ)

(t− λ)3/2 dλ.

An alternative form of this integral can be obtained by
introducing a new variable

µ =
x

2
√

α(1− λ)
.

Let Ts represent the period temperature in ◦F at a point on
the earth surface, as a table of mean monthly air tempera-
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tures.

Subot. N.Sad Bg. Krag. Nis V ranje Knjaz.
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec

Compute the likely mean monthly ground temperatures at
5, 10, 20, 50 feet below the earth surface at each of the given
locations. Plot these computed temperatures to show their
relation to the corresponding surface temperatures. In each
case, assume:

(a) Dry ground with α = 0.0926sq.ft/hr;

(b) The mean monthly ground and air temperatures at the
surface are approximately equal;

(c) The pattern of air temperatures repeats itself indefinitely
from one year to the next.

28. (*) Suppose that (m + 1)(n + 1) functional values f(xi, yi)
are available for all combinations of m + 1 levels of xi, i =
0, 1, . . . ,m and n + 1 levels of yj , j = 0, 1, . . . , n. Define La-
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grangian interpolation coefficients as follows:

Xm,i =
m
∏

k=0
k 6=i

x− xk

xi − xk
, i = 0, 1, . . . ,m,

Yn,j =
m
∏

k=0
k 6=j

y − yk

yj − yk
, j = 0, 1, . . . , n.

Show that

Pm,n(x, y) =
m

∑

i=0

n
∑

j=0

Xm,i(x)Yn,j(y)f(xi, yj)

is a two-dimensional polynomial of degree m in x and degree
n in y of the form

Pm,n(x, y) =
m

∑

i=0

n
∑

j=0

ai,jxiyj ,

and satisfies the (m + 1)(n + 1) conditions

Pm,n(xi, yj) = f(xi, yj) i = 0, 1, . . . , m, j = 0, 1, . . . , n,

and therefore that Pm,n(x, y) may be viewed as a two-
dimensional interpolating polynomial passing through the
(m + 1)(n + 1) points (xi, yi, f(xi, yi)), i = 0, 1, . . . ,m, j =
0, 1, . . . , n.

29. (*) Find a three-dimensional interpolating polynomial of
degree m in x, n in y, and q in z of the form

P (m,n, q)(x, y, z) =
m

∑

i=0

n
∑

j=0

q
∑

k=0

ai,j,k xiyjzk,

that satisfies (m + 1)(n + 1)(q + 1) conditions

Pm,n,q(xi, yj , zk) = f(xi, yj , zk) i = 0, 1, . . . , m,

j = 0, 1, . . . , n,

k = 0, 1, . . . , q.
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Develop a comparable interpolating polynomial for any
number of independent variables. Use any algorithmic
(Fortran, Pascal, C) and symbolic (Mathematica)program-
ming language.

30. Write subprograms (procedures) for calculation of approx-
imate values of definite integrals by trapezoidal (TRAP) and
Simpson’s (SIMPSON) formulas.
Integral function should be given by function procedure or

subprogram. Test example is
1

∫

0

√
x sin x

1 + ex dx, h = 0.01

Hint: Generalized trapezoidal and Simpson’s formula are,
respectively:

b
∫

a

f(x) dx ∼= h[
f(a) + f(b)

2
+ f(a + h) + f(a + 2h) + · · ·+ f(b− h)]

b
∫

a

f(x) dx ∼=
h
3
[f(a) + 4f(a + h) + 2f(a + 2h) + 4f(a + 3h) + · · ·

+ 4f(b− h) + f(b)].

31. According to quadrature formula
1

∫

−1

√

1− x2 f(x) dx ∼=
π

m + 1

m
∑

k=1

sin2 k · π
m + 1

· f(cos
k · π

m + 1
)

write a procedure (subprogram) for calculation of integral
of form

1
∫

−1

√

1− x2 f(x) dx.
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List of subprogram parameters should include m, function,
and (on output) integral value. Test the program with
f(x) = cos x.

32. Write a program (procedure) in any procedural and sym-
bolic language for obtaining a value of integral

I(a) =

∞
∫

0

e−x2
sin ax dx

for a = 0.0(0.1)1.0, using formula

I(a) =

∞
∫

0

e−x2
sin ax dx =

1
2

∞
∑

n=0

(−1)nn!
(2n + 1)!

a2n+1.

Summation has to be stopped when general summation
member is by module less than 10−8.

33. Write a program (procedure) in any procedural and sym-
bolic language for obtaining a value of integral using Gauss’
formula through three points of form

b
∫

a

f(x) dx = h[
5
18

n−1
∑

i=0

f(pi) +
4
9

n−1
∑

i=0

f(qi) +
5
18

n−1
∑

i=0

f(ri)],

where
h =

b− a
n

;

pi = a + 0.112701666 · h + i · h;

qi = a + 0.5 · h + i · h;

ri = a + 0.887298334 · h + i · h.

Test the program with the following integrals:
1.762
∫

0.8

√

1 + x3 dx;

2.624
∫

1.3

dx√
x3 − 1

;

1.724
∫

0.6

√

x(1 + x2) dx;
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1.234
∫

0.

sin2 x√
1 + x3

dx;

1.047
∫

0.

e
x
2

√
x + 1

dx.

Input parameters are n, integral boundaries, and functions
to be integrated.

34. According to formula

1
∫

−1

1√
1− x2

f(x) dx ∼=
π
m

m
∑

k=1

f(cos
π

2m
(2k − 1))

write a corresponding program in any algorithmic or sym-
bolic language. Input parameter list should contain m and
function to be integrated. Output parameter is integral
value.
Test the program with function f(x) = cos x, m = 10.

35. For approximative calculation of integral using formula

1
∫

−1

√

1− x2f(x) dx ∼=
n

∑

k=1

Ak f(xk),

where

xk = cos
kπ

n + 1
, Ak =

π
n + 1

sin2 kπ
n + 1

(k = 1, 2, . . . , n),

write a corresponding (sub)program in any algorithmic or
symbolic language. Input parameter is n and on output is
integral value. Function to be integrated should be given
in arbitrary way.
Test the program with function f(x) = ex for n = 5(1)15.


