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LESSON XI

11. Partial Differential Equations - PDE

11.1. Introduction

Partial differential equations (PDEs) arise in all fields of engineering and science.
Most real physical processes are governed by partial differential equations. In many
cases, simplifying approximations are made to reduce the governing PDEs to ordinary
differential equations (ODEs) or even algebraic equations. However, because of the ever
increasing requirements for more accurate modelling of physical processes, engineers and
scientists are more and more required to solve the actual PDEs that govern the physical
problem being investigated. Physical problems are governed by many different PDEs. A
few problems are governed by a single first-order PDE. Numerous problems are governed
by a system of first order PDEs. Some problems are governed by a single second-order
PDE, and numerous problems are governed by a system of second-order PDEs. A few
problems are governed by fourth order PDEs. The two most frequent types of physical
problems described by PDEs are equilibrium and propagation problems.

The classification of PDEs is most easily explained for a single second order linear
PDE of form

(11.1.1) A
∂2u
∂x2 + B

∂2u
∂x∂y

+ C
∂2u
∂y2 + D

∂u
∂x

+ E
∂u
∂y

+ Fu = G,

where A,B, C, D, E, F, G are given functions which are continuous in area S of plane xOy.
The area S is usually defined as inside part of some curve Γ. Of course, the area S
can be as finite as well as infinite. Typical problem is finding two times continuous
differentiable solution (x, y) → u(x, y) which satisfies equation (11.1.1) and some conditions
on curve (contour) Γ.

Linear PDEs of second order can be classified as eliptic, parabolic and hyperbolic,
depending on the sign of the discriminant B2 − 4AC in given area S, as follows:

10 B2 − 4AC < 0 Elliptic
20 B2 − 4AC = 0 Parabolic
30 B2 − 4AC < 0 Hyperbolic

The terminology elliptic, parabolic, and hyperbolic chosen to classify PDEs reflects
the analogy between the form of the discriminant, B2 − 4AC, for PDEs and the form
of the discriminant, B2 − 4AC, which classifies conic sections, described by the general
second-order algebraic equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,

where we for negative, zero, and positive value of discriminant have ellipse, parabola,
and hyperbola, respectively. It is easy to check that the Laplace equation

(11.1.2)
∂2u
∂x2 +

∂2u
∂y2 = 0,
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is of elliptic type, heat conduction equation

(11.1.3) ∂u
∂t
− a2 ∂2u

∂x2 = 0,

is of parabolic type, and wave equation

(11.1.4)
∂2u
∂t2

− c2 ∂2u
∂x2∂y

= 0

of hyperbolic type. In this chapter we will show one way for numerical solution of PDEs,
for Laplace and wave equation by grid method. In the similar way can be solve heat
conduction equation, what we leave to the reader.

11.2. Grid method

Grid method or difference method, or finite-difference grid method, is basic method
for solution of equations of mathematical physics (partial equations which appear in
physics and science)

Let be given linear PDE

Lu = f(11.2.1)

and let in area D, which is bounded by curve Γ(D = int Γ), look for such its solution on
curve Γ that satisfies given boundary condition

Ku = Ψ ((x, y) ∈ Γ).(11.2.2)

In application of grid method, at first, one should chose discrete set of points Dh,
which belongs to area D(= D ∪ Γ), called grid. Most frequently, in applications is for
grid taken family of parallel straight lines xi = x0 + ih, yj = y0 + jl (i, j = 0,±1,±2, . . .).
Intersection points of these families are called nodes of grid, and h and l are steps of
grid. Two nodes of grid are called neighbored if the distance between them along x and
y axes is one step only. If all four neighbor nodes of some node belong to area D, then
this node is called interior or inner; in counterpart node of grid Dh is called boundary
node. In addition to rectangular grids, in practice are also used other grid shapes.

Grid method consists of approximation of equations (11.2.1) and (11.2.2) using cor-
responding difference equations. Namely, we can approximate operator L by difference
operator very simple, by substituting derivative with corresponding differences in inner
nodes of grid. Thereby are used the following formulas

∂u(xi, yj)
∂x

∼=
ui+1,j − ui,j

h
∂u(xi, yj)

∂y
∼=

ui+1,j − ui−1,j

2h
∂2u(xi, yj)

∂x2
∼=

ui+1,j − 2ui,j + ui−1,j

h2 , etc.

Formulas for partial derivatives in variable y are absolutely symmetric. Approx-
imation of contour conditions can be in some cases very complicated problem, what
depends on form of operator K and contour Γ. At so known contour conditions of first
kind, where Ku = u, one practical way for approximation was proposed by L. Collatz
and comprises of the following:
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Let the closest point from contour Γ to boundary node A be point B and let their
distance be δ (see Fig. 11.2.1).

Figure 11.2.1

Based on function values in points B and C, we get by linear interpolation

u(A) ∼=
hΨ(B) + δu(C)

h + δ
.

Approximation of boundary condition (11.2.2) in this case comprises of defining equations
of above form for every boundary node.

The equations obtained by approximation of equation (11.2.1) and boundary condi-
tion (11.2.2) form system of linear equations, by which solution are obtained numerical
solutions of given problem.

In further consideration we will give two basic examples.

11.3. Laplace equation

Let it be needfully to find solution of Laplace equation

∆u =
∂2u
∂x2 +

∂2u
∂y2 = 0 ((x, y) ∈ D),

which on the contour of square D = {(x, y)|0 < x < 1, 0 < y < 1} fulfills given condition
u(x, y) = Ψ(x, y) ((x, y) ∈ Γ). Let’s chose the grid in Dh at which is l = h =

1
N − 1

, so that
grid nods are points (xi, yi) = ((i − 1)h, (j − 1)l) (i, j = 1, . . . , N). The standard difference
approximation scheme for solving Laplace equation is of form

1
h2 ui+1,j + ui−1,j + ui,j−1 − 4ui,j = 0,

or
ui,j =

1
4
ui,j+1 + ui,j−1 + ui−1,j + ui+1,j).

Taking i, j = 2, . . . , N − 1 in last equality we get the system of (N − 2)2 linear equations.
For solving of this system usually is used method of simple iterations, or, even more
simpler, Gauss-Seidel method.

The corresponding program for solving of problem in consideration is of form

C=================================================
C RESAVANJE LAPLACE-OVE JEDNACINA
C=================================================

DIMENSION U(25,25)
OPEN(8,FILE=’LAPLACE.IN’)
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OPEN(5,FILE=’LAPLACE.OUT’)
READ(8,4)N

4 FORMAT(I2)
M=N-1
READ(8,1)(U(1,J),J=1,N),(U(N,J),J=1,N),

1(U(I,1),I=2,M),(U(I,N),I=2,M)
1 FORMAT(8F10.0)

DO 10 I=2,M
DO 10 J=2,M

10 U(I,J)=0.
IMAX=0

20 WRITE(*,5)
5 FORMAT(5X,’UNETI MAKSIMALNI BROJ ITERACIJA’/

110X, ’(ZA MAX=0 => KRAJ)’)
READ(*,4)MAX
IF(MAX.EQ.0) GOTO 100
DO 30 ITER=1,MAX
DO 30 I=2,M
DO 30 J=2,M

30 U(I,J)=(U(I,J+1)+U(I,J-1)+U(I-1,J)+U(I+1,J))/4.
IMAX=IMAX+MAX
WRITE(5,65) IMAX,(J,J=1,N)

65 FORMAT(//26X,’BROJ ITERACIJA JE’,I3//17X,
14(5X,’J=’,I2))
DO 60 I=1,N

60 WRITE(5,66) I,(U(I,J),J=1,N)
66 FORMAT(13X,’I =’,I2,6F10.4)

GO TO 20
100 CLOSE(8)

CLOSE(5)
STOP
END

For solving system of linear equations we used Gauss-Seidel method with initial
conditions ui,j = 0 (i, j = 2, . . . , N − 1), whereby one can control number of iterations on
input. For N=4 and boundary conditions

u11 = 0, u1,2 = 30, u13 = 60, u1,4 = 90,

u41 = 180, u4,2 = 120, u43 = 60, u4,4 = 0,

u21 = 60, u3,1 = 120, u24 = 60, u3,4 = 30,

the following results are obtained:

BROJ ITERACIJA JE 2
J= 1 J= 2 J= 3 J= 4

I = 1 .0000 30.0000 60.0000 90.0000
I = 2 60.0000 47.8125 53.9063 60.0000
I = 3 120.0000 83.9063 56.9531 30.0000
I = 4 180.0000 120.0000 60.0000 .0000

BROJ ITERACIJA JE 7
J= 1 J= 2 J= 3 J= 4

I = 1 .0000 30.0000 60.0000 90.0000
I = 2 60.0000 59.9881 59.9940 60.0000
I = 3 120.0000 89.9940 59.9970 30.0000
I = 4 180.0000 120.0000 60.0000 .0000

BROJ ITERACIJA JE 9
J= 1 J= 2 J= 3 J= 4

I = 1 .0000 30.0000 60.0000 90.0000
I = 2 60.0000 59.9993 59.9996 60.0000
I = 3 120.0000 89.9996 59.9998 30.0000
I = 4 180.0000 120.0000 60.0000 .0000

BROJ ITERACIJA JE 10
J= 1 J= 2 J= 3 J= 4

I = 1 .0000 30.0000 60.0000 90.0000
I = 2 60.0000 59.9998 59.9999 60.0000
I = 3 120.0000 89.9999 60.0000 30.0000
I = 4 180.0000 120.0000 60.0000 .0000

BROJ ITERACIJA JE 21
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J= 1 J= 2 J= 3 J= 4
I = 1 .0000 30.0000 60.0000 90.0000
I = 2 60.0000 60.0000 60.0000 60.0000
I = 3 120.0000 90.0000 60.0000 30.0000
I = 4 180.0000 120.0000 60.0000 .0000

11.4. Wave equation

Consider wave equation

∂2u
∂x2 =

1
a2 .

∂2u
∂x2(11.4.1)

with initial conditions

(11.4.2) u(x, 0) = f(x), u1(x, 0) = g(x) (0 < x < h)

and boundary conditions

(11.4.3) u(0, t) = Φ(t), u(b, t) = Ψ(t) (t ≥ 0).

Using finite differences, the equation (11.4.1) can be approximated by

ui+1,j − 2ui,j + ui−1,j =
1
r2 (ui,j+1 − 2ui,j + ui,j−1),(11.4.4)

where r = a 1
h (h and l are steps along x and t axes respectively, and ui,j ∼= u(xi, tj). Based

on first equality in (11.4.2) we have

ui,0 = f(xi) = fi.(11.4.5)

By introducing fictive layer j = −1, second initial condition in (11.4.2) can simple be
approximated using

ui(xi, 0) = g(xi) = gi ∼=
ui,1 − ui,−1

2l
.(11.4.6)

If we put in (11.4.4) j = 0 we get

fi+1 − 2fi + fi−1 −
1
r2 (ui,1 − 2fi + ui,−1) = 0,

wherefrom, in regard to (11.4.6) it follows

ui,1 = lgi + fi +
1
2
r2(fi+1 − 2fi + fi−1),

i.e.

ui,1 = lgi + (1− r2)fi +
1
2
r2(fi+1 + fi−1).(11.4.7)

On the other hand, from (11.4.4) it follows

ui,j+1 =
1
r2 (ui+1,j + ui−1,j)− ui,j−1 + 2(

1
r2 − 1)ui,j .(11.4.8)

If we put h = b/N and xi = (i − 1)h (i = 1, 2, . . . , N + 1), due to boundary conditions
(11.4.3) we have

u1,j = Φj , uN+1,j = Ψ(tj) = Ψj ,(11.4.9)
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where j = 0, 1, . . . . For determining of solution inside of rectangle P = {(x, t)|0 < x < b, 0 <
t < Tmax}, maximal value of index j is integer part of Tmax/l i.e. jmax = M = [Tmax/l].

Based on equalities (11.4.5), (11.4.7), (11.4.8), (11.4.9) the approximate solutions of given
problem in grid nodes of rectangle P , are simple to obtain. This algorithm is coded in
the following program.

C==================================================
C RESAVANJE PARCIJALNE DIF. JED. HIPERBOLICNOG TIPA
C==================================================

DIMENSION U(3,9)
OPEN(8,FILE=’TALAS.IN’)
OPEN(5,FILE=’TALAS.OUT’)
READ (8,5)N,A,B,R,TMAX

5 FORMAT(I2,4F5.2)
N1=N+1
WRITE (5,10) (I,I=1,N1)

10 FORMAT(10X,1HJ,<N+1>(4X,’U(’,I1,’,J)’)/)
H=B/FLOAT(N)
EL=R*H/A
M=TMAX/EL
T=0.
DO 15 K=1,2
U(K,1)=FF(T,B,3)
U(K,N1)=FF(T,B,4)

15 T=T+EL
X=0.
R2=R*R
DO 20 I=2,N
X=X+H
U(1,I)=FF(X,B,1)

20 U(2,I)=EL*FF(X,B,2)+(1.-R)*U(1,I)
DO 25 I=2,N

25 U(2,I)=U(2,I)+R2/2.*(U(1,I+1)+U(1,I-1))
J=0

30 WRITE(5,35)J,(U(1,I),I=1,N1)
35 FORMAT(7X,I5,<N1>F10.4)

IF(J.EQ.M)GO TO 50
J=J+1
U(3,1)=FF(T,B,3)
U(3,N1)=FF(T,B,4)
DO 40 I=2,N

40 U(3,I)=(U(2,I+1)+U(2,I-1))/R2-U(1,I)-2.
1*(1./R2-1.)*U(2,I)
T=T+EL
DO 45 I=1,N1
U(1,I)=U(2,I)

45 U(2,I)=U(3,I)
GO TO 30

50 CLOSE(5)
CLOSE(5)
STOP
END

Note that the values of solution in three successive layers j − 1, j, j + 1, are stored in
first, second, and third row of matrix U , respectively. .

Functions f, g, Φ, Ψ are defined by function subroutine FF for I=1,2,3,4, respectively.
In considered case for a = 2, b = 4, Tmax = 6, f(x) = x(4− x), g(x) = 0, Φ(t) = 0, Ψ(t) = 0,

N = 4, and r = 1, subroutine FF and corresponding output listing with result have the
following form:

FUNCTION FF(X,B,I)
GO TO(10,20,30,40),I

10 FF=X*(B-X)
RETURN

20 FF=0.
RETURN



Lesson XI - Partial Differential Equations 195

30 FF=0.
RETURN

40 FF=0.
RETURN
END

J U(1,J) U(2,J) U(3,J) U(4,J) U(5,J)
0 .0000 3.0000 4.0000 3.0000 .0000
1 .0000 2.0000 3.0000 2.0000 .0000
2 .0000 .0000 .0000 .0000 .0000
3 .0000 -2.0000 -3.0000 -2.0000 .0000
4 .0000 -3.0000 -4.0000 -3.0000 .0000
5 .0000 -2.0000 -3.0000 -2.0000 .0000
6 .0000 .0000 .0000 .0000 .0000
7 .0000 2.0000 3.0000 2.0000 .0000
8 .0000 3.0000 4.0000 3.0000 .0000
9 .0000 2.0000 3.0000 2.0000 .0000
10 .0000 .0000 .0000 .0000 .0000
11 .0000 -2.0000 -3.0000 -2.0000 .0000
12 .0000 -3.0000 -4.0000 -3.0000 .0000

11.5. Packages for PDEs

Elliptic PDEs govern equilibrium problem, which have no preferred paths of infor-
mation propagation. The domain of dependence and range of influence of every point is
the entire closed solution domain. Such problems are solved numerically by relaxation
methods. Finite difference methods, as typified by five-point method, yield a system
of finite difference equations, called the system equations, which have to be solved by
relaxation methods. The successive-over-relaxation method (SOR)method is generally
method of choice. The multigrid method (Brandt, 1977) shows the best potential for
rapid convergence. Nonlinear PDEs yield nonlinear finite difference equations (FDE).
System of nonlinear FDEs can be very difficult to solve. The multigrid method can be
applied directly to nonlinear PDEs. Three-dimensional PDEs are approximated simply
by including the finite difference approximations of the spatial derivatives in the third
direction. The relaxation techniques used to solve two-dimensional problems gener-
ally can be used to solve three-dimensional problems, at the expense of a considerable
increase of computational time.

Parabolic PDEs govern propagation problems which have an infinite physical infor-
mation propagation speed. They are usually solved numerically by marching method.
Explicit finite difference methods, like FTCS (Forward-Time Centered-Space method,
see [3], pp. 633-635) are conditionally stable and require relatively small step size in
the marching direction to satisfy the stability criteria. Implicit methods, like BTCS
(Backward-Time Centered-Space method, see [3], pp. 635-637) are unconditionally sta-
ble. The marching step size is restricted by accuracy requirements, not stability require-
ments. For accurate solution of transient problems, the marching step-size for implicit
methods cannot be very much larger than the stable step size for explicit methods.
Consequently, explicit methods are generally preferred for obtaining accurate transient
solutions. Asymptotic steady state solutions can be obtained very efficiently by BTCS
method with a large marching step size. Nonlinear PDEs can be solved directly by
explicit methods. When solved by implicit methods, system of nonlinear FDEs must be
solved. Multidimensional problems can be solved directly by explicit methods. When
solved by implicit methods, large banded systems of FDEs result.

Hyperbolic PDEs govern propagation problems, which have a finite physical infor-
mation propagation speed. They are solved numerically by marching method. Explicit
finite difference methods are conditionally stable and require a relatively small step size
in marching direction to satisfy the stability criteria. Implicit methods, as typified by
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the BTCS method, are unconditionally stable. The marching step size is restricted by
accuracy requirements, not stability requirements. For accurate solution of transient
problems, explicit methods are recommended. When steady state solutions are to be
obtained as the asymptotic solution in time of an appropriate unsteady propagation
problem, BTCS with a large step size is recommended.

Nonlinear PDEs can be solved directly by explicit methods. When solved by implicit
methods, system of nonlinear FDEs must be solved. Multidimensional problems can be
solved directly by explicit methods. When solved by implicit methods, large banded
systems of FDEs result.

Numerous libraries and software packages are available for integrating the Laplace
and Poisson equations, diffusion type (i.e. parabolic) and convection type (i.e. hy-
perbolic) PDEs. Many work stations and main frame computers have such libraries
attached to their operating systems.

Many commercial software packages contain routines for integrating Laplace and
Poisson equations. Due to the wide variety of elliptic, parabolic, and hyperbolic PDEs
governing physical problems, many PDE solvers (programs) have been developed.

The book Numerical Recipes ([7]) contains a lot of algorithms for integrating PDEs.
For some of them is given programming code in Fortran (available also in C). Survey of
methods for solving different classes of PDEs accompanied with algorithms, from which
some are codded, is given in book Numerical Methods for Engineers and Scientists ([3],
Chapter 9, 10 and 11).
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[3] Hoffman, J.D., Numerical Methods for Engineers and Scientists. Taylor & Francis,

Boca Raton-London-New York-Singapore, 2001.
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Nǐs, 1981 (Serbian).
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