
Faculty of Civil Engineering Faculty of Civil Engineering and Architecture
Belgrade Nǐs
Master Study Doctoral Study
COMPUTATIONAL ENGINEERING

LECTURES

LESSON II

2. Linear Systems of Algebraic
Equations: Direct Methods

2.1 ELEMENTS OF MATRIX CALCULUS

2.1.1 LR factorization of quadratic matrix

During solution of systems of linear equation there is often case to present a
quadratic matrix in a form of product of two triangular matrices. This section is devoted
to this problem.

Theorem 2.1.1.1. If all determinants of form

∆k =

∣

∣

∣

∣

∣

∣

a11 · · · a1k
...

ak1 · · · akk

∣

∣

∣

∣

∣

∣

(k = 1, . . . , n− 1)

are different from zero, the matrix A = [aij]n×n can be written in form

A = LR,(2.1.1.1)

where L lower, and R upper triangular matrix.

Triangular matrices L and R of order n are of following forms:

L = [lij]n×n (lij = 0 ⇐ i < j),(2.1.1.2)

R = [rij]n×n (rij = 0 ⇐ i > j).(2.1.1.3)

Decomposition (2.1.1.1), known as LR factorization (decomposition), is not unique, hav-
ing in mind the equality

LR = (cL)(
1
c
R) (∀c 6= 0).

Nevertheless, if diagonal elements of matrix R (or L) take fixed values, not one being
equal to zero, the decomposition is unique. In regards to (2.1.1.2) and (2.1.1.3), and having
in mind

aij =
max(i,j)

∑

k=1

likrkj (i, j = 1, . . . , n)

the elements of matrices L and R can be easy determined by recursive procedure, giving
in advance the values for elements rii(6= 0) or lii(6= 0) (i = 1, . . . , n). For example, if given
numbers rii(6= 0) (i = 1, . . . , n), it holds

l11 =
a11

r11

15

16 Numerical Methods in Computational Engineering










r1i =
a1i

l11

li1 =
ai1

r11











(i = 2, . . . , n);



















































lii =
1
rii

(aii −
i−1
∑

k=1

likrki)



























rij =
1
lii

(aij −
i−1
∑

k=1

likrkj)

lji =
1
rii

(aji −
i−1
∑

k=1

ljkrki)



























(j = i + 1, . . . , n);



















































(i = 2, . . . , n).

In similar way can be defined recursive procedure for determination of matrix ele-
ments of matrices L and R, if the numbers lii(6= 0) (i = 1, . . . , n) are given in advance. In
practical applications one usually takes rii = 1 (i = 1, . . . , n) or lii = 1(i = 1, . . . , n).

Very frequent case in application is of multi-diagonal matrices, i.e. matrices with
elements different from zero on the main diagonal and around the main diagonal. For
example, if aij 6= 0 for |i− j| ≤ 1 and aij = 0 for |i− j| > 1 , the matrix is tri-diagonal. The
elements of such a matrix are usually written as vectors (a2, . . . , an), (b1, . . . , bn), (c1, . . . , cn−1),
i.e.

(2.1.1.4) A =













b1 c1 0 . . . 0 0
a2 b2 c2 0 0
0 a3 b3 0 0
...
0 0 0 an bn













.

If aij 6= 0 (|i− j| ≤ 2) and aij = 0 (|i− j| > 2), we have a case of five-diagonal matrix. Let us
now suppose that tri-diagonal matrix (2.1.1.4) fulfills the conditions of Theorem 2.1.1.1.
For decomposition of such a matrix it is enough to suppose that

L =













β1 0 0 . . . 0 0
α2 β2 0 0 0
0 α3 β3 0 0
...
0 0 0 αn βn













(β1β2 . . . βn 6= 0)

and

R =













1 γ1 0 . . . 0 0
0 1 γ2 0 0
0 0 1 0 0
...
0 0 0 0 1













.

By comparing corresponding elements of matrix A and matrix

LR =













β1 β1γ1 0 . . . 0 0
α2 α2γ1 + β2 β2γ2 0 0
0 α3 α3γ2 + β3 0 0
...
0 0 0 αn αnγn−1 + βn













,

we get the following recursive formulas for determination of elements αi, βi, γi:

β1 = b1, γ1 = c1
β1

,
α1 = ai, βi = bi − αiγi−1, γi = ci

βi
(i = 2, . . . , n− 1),

αn = an, βn = bn − αnγn−1.

Lesson II - Linear Systems of Algebraic Equations: Direct Methods 17

2.1.2 Matrix eigenvectors and eigenvalues

Definition 2.1.2.1. Let A complex quadratic matrix of order n. Every vector ~x ∈ Cn, different from
zero-vector is named eigenvector of matrix A if there exists scalar λ ∈ C such that

A~x = λ~x.(2.1.2.1)

Scalar λ is then named the corresponding eigenvalue.

Considering that (2.1.2.1) can be written in form

(A− λI)~x = ~0,

one can conclude that equation (2.1.2.1) has non-trivial solutions (in ~x) if and only if
det(A− λI) = 0.

2.2 DIRECT METHODS IN LINEAR ALGEBRA

2.2.1 Introduction

Numerical problems in linear algebra can be classified in several groups:
1. Solution of system of linear algebraic equations

A~x = ~b,

where A regular matrix, calculation of determinant of matrix A, and matrix A
inversion;

2. Solution of arbitrary system of linear equations using least-square method;
3. Determination of eigenvalues and eigenvectors of given quadratic matrix;
4. Solution of problems in linear programming.

For solution of these problems, a number of methods is developed. They can be
separated in two classes, as follows.

The first class contains so-called direct methods, known sometimes as exact methods.
The basic characteristic of those methods is that after final number of transformations
(steps) one gets the result. Presuming all operations being performed exact, the gained
result would be absolutely exact. Of course, because the performed computations are
performed with rounding intermediate results, the final result is of limited exactness.

The second class is made of iterative methods, obtaining the result after infinite
number of steps. As initial values for iterative methods are usually used the results
obtained by some direct method.

In subchapter next chapter the main characteristics of iterative methods used in
linear algebra will be described. Let us note that at solution of systems with big number
of equation, used for solution of partial differential equations, the iterative methods are
usually used.

2.2.2 Gauss elimination with pivoting

Consider the system of linear algebraic equations

(2.2.2.1)

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
an1x1 + an2x2 + · · ·+ annxn = bn,

18 Numerical Methods in Computational Engineering

or, in matrix form

(2.2.2.2) A~x = ~b,

where

A =









a11 a12 . . . a1n

a21 a22 . . . a2n
...

an1 an2 . . . ann









, ~b =









b1

b2
...
bn









, ~x =









x1

x2
...

xn









.

Suppose that system of equation (2.2.2.2) has an unique solution. It is very known that
solutions of system (2.2.2.1), i.e. (2.2.2.2), can be expressed using Crammer’s rules

xi =
detAi

detA
(i = 1, 2, · · ·n),

where matrix Ai is obtained from matrix A by replacing i-th column by vector ~b. Nev-
ertheless, these formulas are inappropriate for practical calculations because for cal-
culation of n + 1 determinants one needs a big number of calculations. Namely, if we
would like to calculate the value of determinant of n-th degree by developing of deter-
minant through rows or columns, it would be necessary to proceed Sn = n!− 1 additions
and Mn ∼= n!(e − 1) multiplications (n > 4), what gives the total number of calculations
Pn = Mn + Sn ∼= n!e. Supposing that one operation demands 100µs (what is the case with
fast computers), the total time for calculation of value of determinant of order thirty
(n = 30) would take approximately 2.3·1020 years. Generally speaking, such one procedure
is practically unusable for determinants of order n > 5. One of the most suitable direct
methods for solution of system of linear equations is Gauss method of elimination. This
method is based on reduction of system (2.2.2.2), using equivalent transformations, to
the triangular system

(2.2.2.3) R~x = ~c,

where

R =









r11 r12 . . . r1n

r22 . . . r2n
. . .

rnn









, ~c =









c1

c2
...
cn









.

System (2.2.2.3) is solved successively starting from the last equation. Namely,

xn =
cn

rnn
,

xi =
1
rii

(ci −
n

∑

k=i+1

rikxk) (i = n− 1, . . . , 1).

Let us note that coefficients rii 6= 0, because of assumption that system (2.2.2.2), i.e.
(2.2.2.3) has an unique solution.

We will show now how system (2.2.2.1) can be reduced to equivalent system with
triangular matrix.

Supposing a11 6= 0, let us compute first the factors

mi1 =
ai1

a11
(i = 2, . . . , n),

Lesson II - Linear Systems of Algebraic Equations: Direct Methods 19

and then, by multiplication of first equation in system (2.2.2.1) by m and subtracting
from i-th equation, one gets the system of n− 1 equations

(2.2.2.4)

a(2)
22 x2 + . . . + a(2)

2n xn = b(2)
2

...
a(2)

n2 x2 + . . . + a(2)
nnxn = b(2)

n

where
a(2)

ij = aij −mi1a1j , b(2)
i = bi −mi1b1 (i, j = 2, . . . , n).

Assuming a22 6= 0, and applying the same procedure to (2.2.2.4), with

mi2 =
ai2

a22
(i = 3, . . . , n),

one gets the system of n− 2 equations

a(3)
33 x3 + . . . + a(3)

3n xn = b(3)
3

...
a(3)

n3 x3 + . . . + a(3)
nnxn = b(3)

n

where
a(3)

ij = a(2)
ij −mi2a

(2)
2j , b(3)

i = b(2)
i −mi2b

(2)
2 (i, j = 3, . . . , n).

Continuing this procedure, after n− 1 steps, one gets the equation

a(n)
nn xn = b(n)

n .

From the obtained systems, taking the first equations, one gets the system of equations

a(1)
11 x1 + a(1)

12 x2 + a(1)
13 x3 + · · ·+ a(1)

1n xn = b(1)
1

a(2)
22 x2 + a(2)

23 x3 + · · ·+ a(2)
2n xn = b(2)

2

a(3)
33 x3 + · · ·+ a(3)

3n xn = b(3)
3

...
a(n)

nn xn = b(n)
n ,

where we putted a(1)
ij = aij , b(1)

i = bi.
The presented triangular reduction, or as often called Gauss elimination, is actually

determination of coefficients

mik =
a(k)

ik

a(k)
kk

,

a(k+1)
ij = a(k)

ij −mika(k)
kj ,

b(k+1)
i = b(k)

i −mikb(k)
k (i, j = k + 1, . . . , n)

for k = 1, 2, . . . , n− 1. Note that the elements of matrix R and vector ~c are given as

rij = a(i)
ij , ci = b(i)

i (i = 1,n).

In order the presented reduction to exists, it is necessary to obtain the condition
a(k)

kk 6= 0. Elements a(k)
kk are known as main elements (pivotal elements or pivot). Assuming

matrix A of system (2.2.2.2) being regular, the conditions a(k)
kk 6= 0 are to be obtained by

permutation of equations in system.

20 Numerical Methods in Computational Engineering

Moreover, from the point of view of exactness of results, it is necessary to use so
known strategy of choice of pivotal elements. Modification of Gauss elimination method
in this sense is called Gauss method with choice of pivotal element. In accordance to
this method, for pivotal element in k-th elimination step one takes the element a(k)

rk , for
which holds

|a(k)
rk | = max

k≤i≤n
|a(k)

ik |,

with permutation of k-th and r-th row.
If one obtains in addition to permutation of equations the permutation of unknowns,

it is the best way to take for pivotal element in the k-th elimination step the element
a(k)

rk , for which it holds
|a(k)

rs | = max
k≤i,j≤n

|a(k)
ij |

with permutation of k-th and r-th row (equation) and k-th and s-th column (unknown).
Such method is called the method with total choice of pivotal element.

One can show (see [1], pp. 233-234) that total number of calculations by applying
Gauss method is

N(n) =
1
6
(4n3 + 9n2 − 7n).

For n big enough, one gets N(n) ∼= 2n3/3. It was long time opinion that Gauss method
is optimal regarding number of computations. Nowadays, V. Strassen, by involving
iterative algorithm for multiplying and inverse of matrices, gave a new method for
solution of system of linear equations, by which the number of computations is of order
nlog2 7. Strassen method is thus better than Gauss method log2 7 < 3.

Triangular reduction obtains simple computation of system determinant. Namely,
it holds

detA = a(1)
11 a(2)

22 . . . a(n)
nn .

When used Gauss method with choice of pivotal element, one should take care about
number of permutations of rows (and columns by using method of total choice of pivotal
element), what influences the sign of determinant. This way of determinant calculation
is high efficient. For example, for calculation of determinant of order n = 30, one needs
0.18sec, presuming that one arithmetic operation takes 10µs.

2.2.3. Matrix inversion using Gauss method

Let A = [aij]n×n be regular matrix and let

X =









x11 x12 . . . x1n

x21 x22 . . . x2n
...

xn1 xn2 . . . xnn









= [~x1 ~x2 . . . ~xn]

be its inverse matrix. Vectors ~x1, ~x2, . . . ~xn are first, second,..., n-th column of matrix X.
Let us now define vectors ~e1, ~e2, . . . ~en as

~e1 = [1 0 . . . 0]T , ~e2 = [0 1 0 . . . 0]T , , . . . , ~en = [0 0 . . . 1]T .

Regarding to equality

AX = [A~x1 A~x2 . . .A~xn] = I = [~e1 ~e2 . . . ~en],

the problem of determination of inverse matrix can reduce to solving of n systems of
linear equations

(2.2.3.1) A~xi = ~ei, (i = 1, . . . , n).

Lesson II - Linear Systems of Algebraic Equations: Direct Methods 21

For solving of system (2.2.3.1) it is convenient to use Gauss method, taking in account
that matrix A appears as a matrix of all systems, so that its triangular reduction shell
be done once only. By this procedure all the transformations necessary for triangular
reduction of matrix A should be applied to the unit matrix I = [~e1~e2 . . . ~en]. too. In this
way matrix A transforms to triangular matrix R, and matrix I to matrix C = [~c1~c2 . . .~cn].
Finally, triangular systems of form

R~xi = ~ci (i = 1, . . . , n)

should be solved.

2.2.4 Factorization methods

Factorization methods for solving of system of linear equations are based on fac-
torization of matrix of system to product of two matrices in such form that enables
reduction of system to two systems of equations which can be simple successive solved.
In this section we will show up at the methods based on LR matrix factorization (see
Section 2.1.1).

Given the system of equations

(2.2.4.1) A~x = ~b,

with quadratic matrix A, which all main diagonal minors are zero different. Then, based
on Theorem 2.1.1.1, it exists factorization matrix A = LR, where L lower and R upper
triangular matrix. The factorization is unique defined, if, for example, one adopts unit
diagonal of matrix L. In this case, system (2.2.4.1), i.e. system LR~x = ~b can be presented
in equivalent form

(2.2.4.2) L~y = ~b, R~x = ~y.

Based on previous, for solving of system of equations (2.2.4.1), the following method
can be formulated:
1. Put lii = 1 (i = 1, . . . , n);
2. Determine other elements of matrix L = [lij]n×n and matrix R = [rij]n×n (see Section

2.1.1);
3. Solve first system of equations in (2.2.4.2);
4. Solve second system of equations in (2.2.4.2).

Steps 3. and 4. are simple to be performed. Namely, let

~b = [b1 b2 . . . bn]T , ~y = [y1 y2 . . . yn]T , ~x = [x1 x2 . . . xn]T .

Then

y1 = b1, yi = bi −
i−1
∑

k=1

likyk (i = 2, . . . , n)

and

xn =
yn

rnn
, xi =

1
rii

(yi −
n

∑

k=i+1

rikxk) (i = n− 1, . . . , 1).

The method presented is known in bibliography as method of Cholesky. In the case
when matrix A is normal, i.e. symmetric and positive definite, the Cholesky method can
be simplified. Namely, in this case one can take that L = RT . . Thus, the factorization

22 Numerical Methods in Computational Engineering

of matrix A in form A = RT R should be performed. Based on formulas from Section
2.1.1 for elements of matrix R it holds:

r11 =
√

a11

r1j =
a1j

r11
(j = 2, . . . , n),

rii =

√

√

√

√aii −
i−1
∑

k=1

r2
ki

(i = 2, . . . , n).

rij =
1
rii

(aij −
i−1
∑

k=1

rkirkj) (j = i + 1, . . . , n).

In this case the systems (2.2.4.2) become

RT ~y = ~b, R~x = ~y.

Remark 2.2.4.1. The determinant of normal matrix can be calculated by method of square root as

detA = (r11 r22 . . . rnn)2.

Factorization methods are specially convenient for solving of systems of linear equa-
tions where matrix of systems does not change, but only free vector ~b. Such systems are
very frequent in engineering.

Now it will be shown that Gauss method of elimination can be interpreted as LR
factorization of matrix A. Take matrix A such that during the elimination process
permutation of rows and columns should not be performed. Denote the starting system
as A(1)~x = ~b(1). Gauss elimination procedure gives n − 1 equivalent systems A(2)~x =
~b(2) . . .A(n)~x = ~b(n). where matrix A(k) is of form

A(k) =





















a(1)
11 a(1)

12 . . . a(1)
1k . . . a(1)

1n

a(2)
22 a(2)

2k a(2)
2n

.
a(k)

kk a(k)
kn

...
a(k)

nk a(k)
nn





















.

Let us analyze modification of elements aij(= a(1)
ij) during the process of triangular re-

duction. Because, for k = 1, 2, . . . , n− 1,

a(k+1)
ij = a(k)

ij −mika(k)
kj (i, j = k + 1, . . . , n),

and
a(k+1)

i1 = a(k+1)
i2 = . . . = a(k+1)

ik = 0 (i = k + 1, . . . , n),

by summation we get

aij = a(1)
ij = a(i)

ij +
i−1
∑

k=1

mika(k)
kj (i ≤ j)

and

aij = a(1)
ij = 0 +

i
∑

k=1

mika(k)
kj (i > j).

Lesson II - Linear Systems of Algebraic Equations: Direct Methods 23

By defining mij = 1 (i = 1, . . . , n), the last two equalities can be given in form

(2.2.4.3) aij =
p

∑

k=1

mika(k)
kj (i, j = 1, . . . , n),

where p = min(i, j). Equality (2.2.4.3) is pointing out that Gauss elimination procedure
gives LR factorization of matrix A, where

L =









1
m21 1

. . .
mn1 mn2 . . . 1









, R =









r11 r12 . . . r1n

r22 . . . r2n
. . .

rnn









.

and rik = a(k)
kj . During program realization of Gauss method in order to obtain LR

factorization of matrix A , it is not necessary to use new memory space for matrix
L, but it is convenient to load factors mik in the place of matrix A coefficients which
are annulled in process of triangular reduction. In this way, after completed triangular
reduction, in the memory space of matrix A will be memorized matrices L and R,
according to following scheme:

A ⇒ LR

Consider that diagonal elements of matrix L, all equal to unit, should not be mem-
orized.

Cholesky method, based on LR factorization, is used when matrix A fulfils conditions
of Theorem 2.1.1.1. Nevertheless, usability of this method can be broaden to other
systems with regular matrix, taking in account permutation of equations in system. For
factorization is used Gauss elimination method with pivoting. There will be LR = A′,
where matrix A′ is obtained from matrix A by finite number of row interchange. This
means that in elimination process set of indices of pivot elements I = (p1, . . . , pn−1), where
pk is number of row from which the main element is taken in k-th elimination step,
should be memorized. By solving of system A~x = ~b, after accomplishing a process of
factorization, according to set of indices I, coordinates of vector ~b should be permuted.
In this way the transformed vector ~b′ is obtained, so that solving of given system reduces
to successive solving of triangular systems

(2.2.4.4) L~y = ~b, R~x = ~y.

2.2.5 Program realization

This section is devoted to software realization of methods previously exposed in this
chapter. For successful following of material in this subchapter it is necessary knowledge
exposed in all previous subchapters of this chapter. In presented subprograms the
matrices are treated as vectors.

Program 2.2.5.1. Subprogram for matrix transpose MTRN is of form:

SUBROUTINE MTRN (A, B, N, M)
C
C TRANSPONTOVANJE MATRICE A
C

DIMENSION A(1), B(1)
IC=0
DO 5 I=1, N
IJ=I-N
DO 5 J=1, M

24 Numerical Methods in Computational Engineering

IJ=IJ+N
IC=IC+1

5 B(IC)=A(IJ)
RETURN
END

Parameters in the list of subprogram parameters have the following meaning:
A - input matrix of type N ×M , treated as vector of length NM (taken in form column

by column);
B - output matrix of type M × N (B = AT). Matrix is treated in the same way as

matrix A.

Program 2.2.5.2. Subprogram for multiplication of matrices A (of dimension N ×M)
and B (of dimension M × L) is of form

SUBROUTINE MMAT (A, B, C, N, M, L)
C
C MATRICA A TIPA N*M
C MATRICA B TIPA M*L
C MATRICA C TIPA N*L
C MNOZENJE MATRICA C=A*B
C

DIMENSION A(1), B (1), C (1)
IC=0
I2=-M
DO 5 J=1,L
I2=I2+M
DO 5 I=1, N
IC=IC+1
IA=I-N
IB=I2
C(IC)=0.
DO 5 K=1, M
IA=IA+N
IB=IB+1

5 C(IC)=C(IC) + A(IA)*B(IB)
RETURN
END

Output matrix C (C = A×B) is of dimension N × L.

Program 2.2.5.3. Let us write a program for computing matrix BT A, by using previ-
ously given subprograms, for given matrices A and B. Let matrix A be of type N ×M ,
and matrix B of type N×K (with maximal number of matrix elements for both matrices
100).

This program has the following form:

DIMENSION A(100), B(100), C(100)
OPEN(8,FILE=’MTMM.IN’)
OPEN(5,FILE=’MTMM.OUT’)
READ (8,10) N,M,K

10 FORMAT (3I2)
NM=N*M
NK=K*M
KM=K*M
READ (8,20) (A(I), I=1, NM), (B(I), I=1, NK)

20 FORMAT(16F5.0)
CALL MTRN(B, C, N, K)
CALL MMAT (C, A, B, K, N, M)
WRITE (5,30) ((B(J), J=I, KM, K), I=1, K)

30 FORMAT (5X, ’MATRIX C=B(TR)* A’// (2X,4F6.1))
CLOSE(8)
CLOSE(5)

Lesson II - Linear Systems of Algebraic Equations: Direct Methods 25

STOP
END

Test of program, being proceeded with matrices

A =







−1 3 0 2
1 4 1 5
0 1 −2 0
−2 3 1 3





 , and B =







1 −3 0
0 4 −6
2 −1 2
−1 5 1





 ,

gave the following result:

MATRIX C=B(TR)* A
1.0 2.0 -5.0 -1.0

-3.0 21.0 11.0 29.0
-8.0 -19.0 -9.0 -27.0

Program 2.2.5.4. Method of Cholesky for solving of system of linear equations (see
subchapter 2.2.4) can be realized in the following way:

C==
C CHOLESKY METHOD
C==

DIMENSION A(10,10), B(10)
OPEN(8,FILE=’CHOLESKY.IN’)
OPEN(5,FILE=’CHOLESKY.OUT’)

33 READ(8,100)N
100 FORMAT(I2)

IF(N)11,22,11
11 READ(8,101)(B(I),I=1,N)

101 FORMAT(8F10.4)
C READ IN THE UPPER MATRIX TRIANGLE OF A

READ(8,101)((A(I,J),J=1,N),I=1,N)
WRITE(5,102)N

102 FORMAT(/ 5X,’MATRIX DIMENSION =’,I3//
1 5X,’MATRICA A’,
2 <(N-1)*12+3>X,’VEKTOR B’/)
WRITE(5,103)((A(I,J),J=1,N),B(I),I=1,N)

103 FORMAT(1X,<N>F12.7,F13.7)
C FACTORIZATION OF MATRIX A TO THE FORM A=L*R

DO 10 I=2,N
10 A(1,I)=A(1,I)/A(1,1)

DO 25 I=2,N
I1=I-1
S=A(I,I)
DO 20 K=1,I1

20 S=S-A(I,K)*A(K,I)
A(I,I)=S
IF(I.EQ.N) GO TO 40
IJ=I+1
DO 25 J=IJ,N
S=A(I,J)
T=A(J,I)
DO 30 K=1,I1
S=S-A(I,K)*A(K,J)

30 T=T-A(J,K)*A(K,I)
A(I,J)=S/A(I,I)

25 A(J,I)=T
40 WRITE(5,107)

107 FORMAT(//5X,’MATRIX L’/)
DO 111 I=1,N

111 WRITE(5,103)(A(I,J),J=1,I)
WRITE(5,108)

108 FORMAT(//5X,’MATRIX R’/)
N1=N-1
DO 222 I=1,N1
II=I+1

26 Numerical Methods in Computational Engineering

M=N-I
222 WRITE(5,99) (A(I,J),J=II,N)

WRITE(5,99)
99 FORMAT(<12*I-8>X,’1.0000000’,<M>F12.7)

C OBTAINING THE VECTOR OF SOLUTIONS
B(1)=B(1)/A(1,1)
DO 55 I=2,N
I1=I-1
DO 45 K=1,I1

45 B(I)=B(I)-A(I,K)*B(K)
55 B(I)=B(I)/A(I,I)

DO 50 J=1,N1
I=N-J
I1=I+1
DO 50 K=I1,N

50 B(I)=B(I)-A(I,K)*B(K)
WRITE(5,109)

109 FORMAT(//13X,’VEKTOR OF SOLUTIONS’/)
WRITE(5,104)(B(I),I=1,N)

104 FORMAT(12X,F12.7)
GO TO 33

22 CLOSE(5)
CLOSE(8)
STOP
END

For factorization of matrix A(= LR) we take in upper triangular matrix R unit
diagonal, i.e. rii = 1 (i = 1, . . . , n). Program is organized in this way so that matrix
A transforms to matrix A1, which lower triangle (including main diagonal) is equal to
matrix L, and strict upper triangle to matrix R. Note that diagonal elements in matrix
R are not memorized, but only formally printed, using statement FORMAT. Note also that
in Section 2.2.4. the unit diagonal has been adopted into matrix L.

By applying this program to the applicable system of equations, the following results
are obtained:

MATRIX DIMENSION = 4
MATRICA A VEKTOR B

1.0000000 4.0000000 1.0000000 3.0000000 9.0000000
.0000000 -1.0000000 2.0000000 -1.0000000 .0000000

3.0000000 14.0000000 4.0000000 1.0000000 22.0000000
1.0000000 2.0000000 2.0000000 9.0000000 14.0000000
MATRIX L

1.0000000
.0000000 -1.0000000

3.0000000 2.0000000 5.0000000
1.0000000 -2.0000000 -3.0000000 2.0000000
MATRIX R

1.0000000 4.0000000 1.0000000 3.0000000
1.0000000 -2.0000000 1.0000000

1.0000000 -2.0000000
1.0000000

VEKTOR OF SOLUTIONS
1.0000000
1.0000000
1.0000000
1.0000000

Program 2.2.5.5. In similar way can be realized square root method for solution of
system of linear equations with symmetric, positive definite matrix. In this case it is
enough to read in only main diagonal elements of matrix A, and, for example, elements
from upper triangle.

The program and output listing for given system of equations are given in the
following text. Note that from the point of view of memory usage it is convenient to

Lesson II - Linear Systems of Algebraic Equations: Direct Methods 27

treat matrix A as a vector. Nevertheless, due to easier understanding, we did not follow
this convenience on this place.

Program is organized in this way so that, in addition to solution of system of equa-
tion, the determinant of system is also obtained. In output listing the lower triangle of
symmetric matrix is omitted.

$DEBUG
C===
C SOLUTION OF SYSTEM OF LINEAR EQUATIONS
C BY SQARE ROOT METHOD
C===

DIMENSION A(10,10),B(10)
OPEN(8,FILE=’SQR.IN’)
OPEN(5,FILE=’SQR.OUT’)

3 READ(8,100)N
100 FORMAT(I2)

IF(N) 1,2,1
C READ IN VECTOR B

1 READ(8,101) (B(I),I=1,N)
101 FORMAT(8F10.4)

C READ IN UPPER TRIANGULAR PART OF MATRIX A
READ(8,101)((A(I,J),J=I,N),I=1,N)
WRITE(5,102)

102 FORMAT(////5X,’MATRIX OF SYSTEM’/)
WRITE(5,99)((A(I,J),J=I,N),I=1,N)

99 FORMAT(<12*I-11>X,<N-I+1>F12.7)
WRITE(5,105)

105 FORMAT(//5X,’VECTOR OF FREE MEMBERS’/)
WRITE(5,133)(B(I),I=1,N)

133 FORMAT(1X,10F12.7)
C OBTAINING OF ELEMENTS OF UPPER TRIANGULAR MATRIX

A(1,1)=SQRT(A(1,1))
DO 11 J=2,N

11 A(1,J)=A(1,J)/A(1,1)
DO 12 I=2,N
S=0.
IM1=I-1
DO 13 K=1,IM1

13 S=S+A(K,I)*A(K,I)
A(I,I)=SQRT(A(I,I)-S)
IF(I-N) 29,12,29

29 IP1=I+1
DO 14 J=IP1,N
S=0.
DO 15 K=1,IM1

15 S=S+A(K,I)*A(K,J)
14 A(I,J)=(A(I,J)-S)/A(I,I)
12 CONTINUE

C CALCULATION OF DETERMINANT
DET=1.
DO 60 I=1,N

60 DET=DET*A(I,I)
DET=DET*DET

C SOLUTION OF SYSTEM L*Y=B
B(1)=B(1)/A(1,1)
DO 7 I=2,N
IM1=I-1
S=0.
DO 8 K=1,IM1

8 S=S+A(K,I)*B(K)
P=1./A(I,I)

7 B(I)=P*(B(I)-S)
C
C SOLUTION OF SYSTEM R*X=Y
C MEMORIZING OF RESULTS INTO VECTOR B
C

B(N)=B(N)/A(N,N)
NM1=N-1

28 Numerical Methods in Computational Engineering

DO 30 II=1,NM1
JJ=N-II
S=0.
JJP1=JJ+1
DO 50 K=JJP1,N

50 S=S+A(JJ,K)*B(K)
30 B(JJ)=(B(JJ)-S)/A(JJ,JJ)

C
C PRINTING OF RESULTS
C

WRITE (5,201)
201 FORMAT(//5X,’MATRIX R’/)

Pause 1
C DO 222 I=1,N
222 WRITE(5,199)((A(I,J),J=I,N),I=1,N)
199 FORMAT(<12*I-11>X,<N-I+1>F12.7)

WRITE(5,208) DET
208 FORMAT(//5X,’SYSTEM DETERMINANT D=’,F11.7/)

WRITE(5,109)
109 FORMAT(//5X,’SYSTEM SOLUTION ’/)

WRITE(5,133)(B(I),I=1,N)
GO TO 3

2 CLOSE(5)
CLOSE(8)
STOP
END

MATRIX OF SYSTEM
3.0000000
.0000000
1.0000000
2.0000000
1.0000000
1.0000000

VECTOR OF FREE MEMBERS
4.0000000 3.0000000 3.0000000
MATRIX R

1.7320510
.0000000
.5773503
1.4142140
.7071068
.4082483

SYSTEM DETERMINANT D= 1.0000000
SYSTEM SOLUTION
.9999999 .9999998 1.0000000

Program 2.2.5.6. Method of factorization for solution of systems of linear equations
based on Gauss elimination with choice of pivotal element (see Sections 2.2.2 and 2.2.4)
can be programmable realized using the following subprograms:

SUBROUTINE LRFAK(A,N,IP,DET,KB)
DIMENSION A(1),IP(1)
KB=0
N1=N-1
INV=0
DO 45 K=1,N1
IGE=(K-1)*N+K

C
C FINDING THE PIVOTAL ELEMENT IN K-TH
C ELIMINATION STEP
C

GE=A(IGE)
I1=IGE+1
I2=K*N
IMAX=IGE
DO 20 I=I1,I2
IF(ABS(A(I))-ABS(GE)) 20,20,10

Lesson II - Linear Systems of Algebraic Equations: Direct Methods 29

10 GE=A(I)
IMAX=I

20 CONTINUE
IF(GE)25,15,25

15 KB=1
C
C MATRIX OF SYSTEM IS SINGULAR
C

RETURN
25 IP(K)=IMAX-N*(K-1)

IF(IP(K)-K) 30,40,30
30 I=K

IK=IP(K)
C
C ROW PERMUTATION
C

DO 35 J=1,N
S=A(I)
A(I)=A(IK)
A(IK)=S
I=I+N

35 IK=IK+N
INV=INV+1

C
C K-TH ELIMINATION STEP
C
40 DO 45 I=I1,I2

A(I)=A(I)/GE
IA=I
IC=IGE
K1=K+1
DO 45 J=K1,N
IA=IA+N
IC=IC+N

45 A(IA)=A(IA)-A(I)*A(IC)
C
C CALCULATION OF DETERMINANT
C

DET=1.
DO 50 I=1,N
IND=I+(I-1)*N

50 DET=DET*A(IND)
IF(INV-INV/2*2) 55,55,60

60 DET=-DET
55 RETURN

END
C
C

SUBROUTINE RSTS(A,N,IP,B)
DIMENSION A(1),IP(1),B(1)

C
C SUCCESSIVE SOLUTION OF TRIANGULAR SYSTEMS
C

N1=N-1
C VECTOR B PERMUTATION

DO 10 I=1,N1
I1=IP(I)
IF(I1-I) 5,10,5

5 S=B(I)
B(I)=B(I1)
B(I1)=S

10 CONTINUE
C SOLUTION OF LOWER TRIANGULAR SYSTEM

DO 15 K=2,N
IA=-N+K
K1=K-1
DO 15 I=1,K1
IA=IA+N

15 B(K)=B(K)-A(IA)*B(I)
C SOLUTION OF UPPER TRIANGULAR SYSTEM

NN=N*N

30 Numerical Methods in Computational Engineering

B(N)=B(N)/A(NN)
DO 25 KK=1,N1
K=N-KK
IA=NN-KK
I=N+1
DO 20 J=1,KK
I=I-1
B(K)=B(K)-A(IA)*B(I)

20 IA=IA-N
25 B(K)=B(K)/A(IA)

RETURN
END

Parameters in subprogram list of LRFAK are of following meaning:
A - Input matrix of order N stored columnwise (column by column). After N-1

elimination steps matrix A transforms to matrix which contains triangular matrices L
and R (see section 2.2.4);

N - order of matrix A;
IP - vector of length N-1, which is formed during elimination procedure and contains

indices of pivot elements (see section 2.2.4);
DET - output variable containing determinant of matrix of system A, as product of

elements on diagonal of matrix R, with accuracy up to sign. This value are corrected
by sign on the end of procedure, having in mind number of row permutations during
elimination process;

KB - control number with value KB=0 if factorization is correctly proceeded, and KB=1
if matrix of system is singular. In the last case, LR factorization does not exist.

Subroutine RSTS solves successively systems of equations
(2.2.4.4). Parameters in list of subroutine parameters are of following meaning:

A - matrix obtained in subroutine LRFAK;
N - order of matrix A;
IP - vector obtained in subroutine LRFAK;
B - vector of free members in system to be solved. This vector transforms to vector

of system solutions.
Main program is written in such way that, at first, given matrix A is factorized by

means of subroutine LRFAK, and then is possible to solve system of equations A~x = ~b for
arbitrary number of vectors ~b, by calling subroutine RSTS.

Main program and output listing are of form:

DIMENSION A(100),B(10),IP(9)
OPEN(8,FILE=’FACTOR.IN’)
OPEN(5,FILE=’FACTOR.OUT’)
READ(8,5)N

5 FORMAT(I2)
NN=N*N
READ(8,10)(A(I),I=1,NN)

10 FORMAT(16F5.0)
WRITE(5,34)

34 FORMAT(1H1,5X,’MATRICA A’/)
DO 12 I=1,N

12 WRITE(5,15)(A(J),J=I,NN,N)
15 FORMAT(10F10.5)

CALL LRFAK(A,N,IP,DET,KB)
IF(KB) 20,25,20

20 WRITE(5,30)
30 FORMAT(1H0,’MATRICA JE SINGULARNA’//)

GO TO 70
25 WRITE(5,35)
35 FORMAT(1H0,5X,’FAKTORIZOVANA MATRICA’/)

DO 55 I=1,N
55 WRITE(5,15)(A(J),J=I,NN,N)

Lesson II - Linear Systems of Algebraic Equations: Direct Methods 31

WRITE(5,75)DET
75 FORMAT(/5X,’DETERMINANTA MATRICE A=’F10.6/)
50 READ(8,10,END=70) (B(I),I=1,N)

WRITE(5,40)(B(I),I=1,N)
40 FORMAT(/5X,’VEKTOR B’//(10F10.5))

CALL RSTS(A,N,IP,B)
WRITE(5,45) (B(I),I=1,N)

45 FORMAT(/5X,’RESENJE’//(10F10.5))
GO TO 50

70 CLOSE(5)
CLOSE(8)
STOP
END

1 MATRICA A
3.00000 1.00000 6.00000
2.00000 1.00000 3.00000
1.00000 1.00000 1.00000

0 FAKTORIZOVANA MATRICA
3.00000 1.00000 6.00000
.33333 .66667 -1.00000
.66667 .50000 -.50000
DETERMINANTA MATRICE A= 1.000000
VEKTOR B

2.00000 7.00000 4.00000
RESENJE

18.99999 -7.00000 -8.00000
VEKTOR B

1.00000 1.00000 1.00000
RESENJE

.00000 1.00000 .00000

Program 2.2.5.7. Using subroutine LRFAK and RSTS, having in mind section 2.2.3, it
is easy to write program for matrix inversion. The corresponding program and output
result (for matrix from previous example) have the following form:

C==
C INVERZIJA MATRICE
C==

DIMENSION A(100), B(10), IP(9),AINV(100)
open(8,file=’invert.in’)
open(5,file=’invert.out’)
READ(8,5) N

5 FORMAT(I2)
NN=N*N
READ(8,10)(A(I),I=1,NN)

10 FORMAT(16F5.0)
WRITE(5,34)

34 FORMAT(1H1, 5X, ’MATRICA A’/)
DO 12 I=1,N

12 WRITE(5,15) (A(J),J=I,NN,N)
15 FORMAT(10F10.5)

CALL LRFAK(A,N,IP,DET,KB)
IF(KB) 20,25,20

20 WRITE(5,30)
30 FORMAT(1H0,’MATRICA A JE SINGULARNA’//)

GO TO 70
25 DO 45 I=1,N

DO 40 J=1,N
40 B(J)=0.

B(I)=1.
CALL RSTS(A,N,IP,B)
IN=(I-1)*N
DO 45 J=1,N
IND=IN+J

45 AINV(IND)=B(J)
WRITE(5,50)

50 FORMAT(1H0,5X,’INVERZNA MATRICA’/)

32 Numerical Methods in Computational Engineering

DO 55 I=1,N
55 WRITE(5,15)(AINV(J),J=I,NN,N)
70 CLOSE(5)

CLOSE(8)
STOP
END

1 MATRICA A
3.00000 1.00000 6.00000
2.00000 1.00000 3.00000
1.00000 1.00000 1.00000

0 INVERZNA MATRICA
-2.00000 5.00000 -3.00000
1.00000 -3.00000 3.00000
1.00000 -2.00000 1.00000

Bibliography

[1] Milovanović, G.V., Numerical Analysis I, Naučna knjiga, Beograd, 1988 (Serbian).
[2] Milovanović, G.V. and Djordjević, Dj.R., Programiranje numeričkih metoda na

FORTRAN jeziku. Institut za dokumentaciju zaštite na radu ”Edvard Kardelj”,
Nǐs, 1981 (Serbian).

(The full list of references and further reading is given on the end of Chapter 4.)

