
Faculty of Civil Engineering Faculty of Civil Engineering and Architecture
Belgrade Nǐs
Master Study Doctoral Study
COMPUTATIONAL ENGINEERING

LECTURES

LESSON V

5. Eigensystems

5.0 Introduction

An n×n matrix A is said to have an eigenvector ~x and corresponding eigenvalue λ if

(5.0.1) A · ~x = λ~x

Obviously any multiple of an eigenvector ~x will also be an eigenvector, but we won’t
consider such multiples as being distinct eigenvectors. (The zero vector is not considered
to be an eigenvector at all). Evidently (5.0.1) can hold only if

(5.0.2) det|A− λI| = 0,

which, if expanded out, is an nth degree polynomial in λ whose roots are the eigenval-
ues. This proves that there are always n (not necessarily distinct) eigenvalues. Equal
eigenvalues coming from multiple roots are called degenerate. Root searching in the
characteristic equation (5.0.2) is usually a very poor computational method for finding
eigenvalues (see [2], pp. 449-453).

The above two equations also prove that every one of the n eigenvalues has a (not
necessarily distinct) corresponding eigenvector: If λ is set to an eigenvalue, then the
matrix A − λI is singular, and we know that every singular matrix has at least one
nonzero vector in its null-space (consider singular value decomposition).

If you add τx to both sides of (5.0.1), you will easily see that the eigenvalues of any
matrix can be changed or shifted by an additive constant τ by adding to the matrix that
constant times the identity matrix. The eigenvectors are unchanged by this shift. Shift-
ing, as we will see, is an important part of many algorithms for computing eigenvalues.
We see also that there is no special significance to a zero eigenvalue. Any eigenvalue
can be shifted to zero, or any zero eigenvalue can be shifted away from zero.

Definitions

A matrix is called symmetric if it is equal to its transpose,

(5.0.3) A = AT or aij = aji

It is called Hermitian or self-adjoint if it equals to the complex-conjugate its trans-
pose (its Hermitian conjugate, denoted by ”†”)

(5.0.4) A = A† or aij = a∗ji

49

50 Numerical Methods in Computational Engineering

It is termed orthogonal if its transpose equals its inverse

(5.0.5) AT ·A = A ·AT = I

and unitary if its Hermitian conjugate equals its inverse. Finally, a matrix is called
normal if it commutes with its Hermitian conjugate,

(5.0.6) A ·A† = A† ·A

For real matrices, Hermitian means the same as symmetric, unitary means the same as
orthogonal, and both of these distinct classes are normal.

The reason that ”Hermitian” is an important concept has to do with eigenvalues.
The eigenvalues of a Hermitian matrix are all real. In particular, the eigenvalues of a
real symmetric matrix are all real. Contrariwise, the eigenvalues of a real nonsymmetric
matrix may include real values, but may also include pairs of conjugate values; and the
eigenvalues of a complex matrix that is not Hermitian will in general be complex.

The reason that ”normal” is an important concept has to do with the eigenvectors.
The eigenvectors of a normal matrix with non-degenerate (i.e., distinct) eigenvalues are
complete and orthogonal, spanning the n-dimensional vector space. For a normal matrix
with degenerate eigenvalues, we have the additional freedom of replacing the eigenvec-
tors corresponding to a degenerate eigenvalue by linear combinations of themselves.
Using this freedom, we can always perform Gramm-Schmidt orthogonalization and find
a set of eigenvectors that are complete and orthogonal, just as in the nondegenerate
case. The matrix whose columns are an orthonormal set of eigenvectors is evidently
unitary. A special case is that the matrix of eigenvectors of a real symmetric matrix is
orthogonal, since the eigenvectors of that matrix are all real.

When a matrix is not normal, as typified by any random, nonsymmetric, real matrix,
then in general we cannot find any orthonormal set of eigenvectors, nor even any pairs
of eigenvectors that are orthogonal (except perhaps by rare chance). While the n non-
orthonormal eigenvectors will ”usually” span the n-dimensional vector space, they do
not always do so; that is, the eigenvectors are not always complete. Such a matrix is
said to be defective.

Left and Right Eigenvectors

While the eigenvectors of a non-normal matrix are not particularly orthogonal
among themselves, they do have an orthogonality relation with a different set of vectors,
which we must now define. Up to now our eigenvectors have been column vectors that
are multiplied to the right of a matrix A, as in (5.0.1). These, more explicitly, are termed
right eigenvectors. We could also, however, try to find vectors, which multiply A to the
left and satisfy

(5.0.7) ~x ·A = λ~x

These are called left eigenvectors. By taking the transpose of (5.0.7), one can see
that every left eigenvector is the transpose of a right eigenvector of the transpose of A .
Now by comparing to (5.0.2), and using the fact that the determinant of a matrix equals
the determinant of its transpose, we also see that the left and right eigenvalues of A are
identical.

If the matrix A is symmetric, then the left and right eigenvectors are just transposes
of each other, that is, have the same numerical values as components. Likewise, if the
matrix is self-adjoint, the left and right eigenvectors are Hermitian conjugates of each
other. For the general non-normal case, however, we have the following calculation: Let

Lesson V - Eigensystems 51

XR be the matrix formed by columns from the right eigenvectors, and XL be the matrix
formed by rows from the left eigenvectors. Then (5.0.1) and (5.0.7) can be rewritten as

(5.0.8) A ·XR = XR · diag(λ1 . . . λN); XL ·A = diag(λ1 . . . λN) ·XL

Multiplying the first of these equations on the left by XL, the second on the right by
XR, and subtracting the two, gives

(5.0.9) (XL ·XR) · diag(λ1 . . . λN) = diag(λ1 . . . λN) · (XL ·XR)

This says that the matrix of dot products of the left and right eigenvectors commutes
with the diagonal matrix of eigenvalues. But the only matrices that commute with a
diagonal matrix of distinct elements are themselves diagonal. Thus, if the eigenvalues
are non-degenerate, each left eigenvector is orthogonal to all right eigenvectors except
its corresponding one, and vice versa. By choice of normalization, the dot products of
corresponding left and right eigenvectors can always be made unity for any matrix with
non-degenerate eigenvalues.

If some eigenvalues are degenerate, then either the left or the right eigenvectors
corresponding to a degenerate eigenvalue must be linearly combined among themselves
to achieve orthogonality with the right or left ones, respectively. This can always be
done by a procedure akin to Gram-Schmidt orthogonalization. The normalization can
then be adjusted to give unity for the nonzero dot products between corresponding left
and right eigenvectors. If the dot product of corresponding left and right eigenvectors
is zero at this stage, then you have a case where the eigenvectors are incomplete. Note
that incomplete eigenvectors can occur only where there are degenerate eigenvalues,
but do not always occur in such cases (in fact, never occur for the class of ”normal”
matrices).

In both the degenerate and non-degenerate cases, the final normalization to unity
of all nonzero dot products produces the result: The matrix whose rows are left eigen-
vectors is the inverse matrix of the matrix whose columns are right eigenvectors, if the
inverse exists.

Diagonalization of a Matrix

Multiplying the first equation in (5.0.8) by XL, and using the fact that XL and XR

are matrix inverses, we get

(5.0.10) X−1
R ·A ·XR = diag(λ1 . . . λN).

This is a particular case of a similarity transform of the matrix A,

(5.0.11) A → Z−1 ·A · Z

for some transformation matrix Z. Similarity transformations play a crucial role in the
computation of eigenvalues, because they leave the eigenvalues of a matrix unchanged.
This is easily seen from

det|Z−1 ·A · Z− λI| = det|Z−1 · (A− λI) · Z|
= det|Z| det|A− λI| det|Z−1|(5.0.12)

= det|A− λI|

Equation (5.0.10) shows that any matrix with complete eigenvectors (which includes
all normal matrices and ”most” random non-normal ones) can be diagonalized by a

52 Numerical Methods in Computational Engineering

similarity transformation, that the columns of the transformation matrix that effects
the diagonalization are the right eigenvectors, and that the rows of its inverse are the
left eigenvectors.

For real, symmetric matrices, the eigenvectors are real and orthonormal, so the
transformation matrix is orthogonal. The similarity transformation is then also an
orthogonal transformation of the form

(5.0.13) A → ZT ·A · Z

While real nonsymmetric matrices can be diagonalized in their usual case of complete
eigenvectors, the transformation matrix is not necessarily real. It turns out, however,
that a real similarity transformation can ”almost” do the job. It can reduce the matrix
down to a form with little two-by-two blocks along the diagonal, all other elements zero.
Each two-by-two block corresponds to a complex-conjugate pair of complex eigenvalues.

The ”grand strategy” of virtually all modern eigensystem routines is to nudge the
matrix A towards diagonal form by a sequence of similarity transformations,

(5.0.14)
A → P1

−1 ·A ·P1 → P−1
2 ·P−1

1 ·A ·P1 ·P2

→ P−1
3 ·P−1

2 ·P−1
1 ·A ·P1 ·P2 ·P3 → etc.

If we get all the way to diagonal form, then the eigenvectors are the columns of the
accumulated transformation

(5.0.15) XR = P1 ·P2 ·P3 · . . .

Sometimes we do not want to go all the way to diagonal form. For example, if we
are interested only in eigenvalues. not eigenvectors, it is enough to transform the matrix
A to be triangular, with all elements below (or above) the diagonal zero. In this case
the diagonal elements are already the eigenvalues, as you can see by mentally evaluating
(5.0.2) using expansion by minors.

There are two rather different sets of techniques for implementing the strategy
(5.0.14). It turns out that they work rather well in combination, so most modern eigen-
system routines use both. The first set of techniques constructs individual Pi’s as
explicit ”atomic” transformations designed to perform specific tasks, for example zero-
ing a particular off-diagonal element (Jacobi transformation), or a whole particular row
or column (Householder transformation), elimination method). In general, a finite se-
quence of these simple transformations cannot completely diagonalize a matrix. There
are then two choices: either use the finite sequence of transformations to go most of the
way (e.g., to some special form like tridiagonal or Hessenberg) and follow up with the
second set of techniques about to be mentioned; or else iterate the finite sequence of
simple transformations over and over until the deviation of the matrix from diagonal is
negligibly small. This latter approach is conceptually simplest. However, for n greater
than ∼ 10, it is computationally inefficient by a roughly constant factor ∼ 5.

The second set of techniques, called factorization methods, is more subtle. Suppose
that the matrix A can be factored into a left factor FL and a right factor FR. Then

(5.0.16) A = FL · FR or equivalently F−1
L ·A = FR

If we now multiply back together the factors in the reverse order, and use the second
equation in (5.0.16) we get

(5.0.17) FR · FL = F−1
L ·A · FL

Lesson V - Eigensystems 53

which we recognize as having effected a similarity transformation on A with the trans-
formation matrix being FL. The QR method which exploits this idea will be explained
later.

Factorization methods also do not converge exactly in a finite number of transfor-
mations. But the better ones do converge rapidly and reliably, and, when following an
appropriate initial reduction by simple similarity transformations, they are the methods
of choice. The presented considerations are very important for those dealing with dy-
namics of construction and seismic engineering, especiallin the phase of modelling and
dynamic response computation.

Definitions and theorems regarding eigenvalue problem

For further considerations we need some theorems and definitions, as follows (see
[1], pp. 211-213).

Definition 5.0.1. Let A = [aij] be complex square matrix of order n. Every vector ~f ∈ Cn, which is
different from zero-vector, is called eigenvector of matrix A if exists scalar λ ∈ C such that holds (5.0.1).
Scalar λ in (5.0.1) is called corresponding eigenvalue. Having in mind that (5.0.1) can be presented in
the form

(A− λI)~x = ~0,

we conclude that equation (5.0.1) has non-trivial solutions (in ~x) then and only then if holds (5.0.2).

Definition 5.0.2. If A is square matrix, then polynomial λ → P (λ) = det(A−λI) is called characteristic
polynomial, and corresponding equation P (λ) = 0 its characteristic equation.

Let A = [aij]n×n. The characteristic polynomials can be expressed in the form

P (λ) =

∣

∣

∣

∣

∣

∣

∣

∣

a11 − λ a12 . . . a1n
a21 a22 − λ a2n
...

an1 a12 ann − λ

∣

∣

∣

∣

∣

∣

∣

∣

or
P (λ) = (−1)n(λn − p1λn−1 + p2λn−2 − · · ·+ (−1)n−1pn−1λ + (−1)npn),

where pk is sum of all principal minors of order k of determinant of matrix A, i.e.

pk =
∑

1≤i1<i2<···<ik≤n

det(Ai1i2···ik
i1i2···ik

).

Note that
p1 =

n
∑

i=1

aii = tr A and pn = det(A).

Often, in place of characteristic polynomial P is used so known normed characteristic
polynomial H, defined by

H(λ) = (−1)nP (λ) = λn − p1λn−1 + p2λn−2 − · · ·+ (−1)npn.

Eigenvalues of matrix A (i.e. zeros of polynomial P) λi(i = 1, . . . , n)) will be denoted
as λi(A).

Definition 5.0.3. The set of all eigenvalues of square matrix A is called spectrum of that matrix and
denoted with Sp (A).

Definition 5.0.4. Spectral radius ρ(A) of square matrix A is number

ρ(A) = max
i
|λi(A)|.

Theorem 5.0.1. Every matrix is, in matrix sense, null of its characteristic polynomial.

This theorem is known as Cayley-Hamilton theorem.

54 Numerical Methods in Computational Engineering

Theorem 5.0.2. Let λ1, . . . , λn be eigenvalues of matrix A = [aij] of order n and x → Q(x) scalar
polynomial of degree m. Then

Q(λ1), . . . , Q(λn)

are eigenvalues of matrix Q(A).

Theorem 5.0.3. Let λ1, . . . , λn be eigenvalues of regular matrix A of order n. Then

λ−1
1 , . . . , λ−1

n

are eigenvalues of matrix A−1.

Theorem 5.0.4. Eigenvalues of triangular matrix are equal to diagonal elements.

The following theorem gives recursive procedure for obtaining characteristic poly-
nomial of tridiagonal matrix.

Theorem 5.0.5. Let

Ak =









b1 c1 0 . . . 0
a2 b2 c2 0
...
0 0 bk









and Hk(λ) = (−1)k det(Ak − λI).

Normed characteristic polynomial λ → H(λ) (= Hn(λ)) of matrix A(= An) is to be obtained by recursive
procedure

Hk(λ) = (λ− bk)Hk−1(λ)− ak−1ck−1Hk−2(λ) (k = 2, . . . , n),

where H0(λ) = 1 and Hk−1(λ) = λ− b1.

Definition 5.0.5. For matrix B one says to be similar to matrix A if there exists at least one regular
matrix C such that

B = C−1AC.

Theorem 5.0.6. Similar matrices have identical characteristic polynomials, and therewith identical
eigenvalues.

5.1 Localization of Eigenvalues

A lot of problems reduce to eigenvalue problem. Here we will give some results
regarding localization of eigenvalues in complex space (see [1], pp. 290-292).

Theorem 5.1.1 (Gershgorin). Let A = [aij] square matrix of order n and Ci (i = 1, . . . n) discs in
complex space with centers in aii and radiuses ri =

∑

j=i
j 6=i

|aij |, i.e.

Ci = {z | |z − aii| ≤ ri} (i = 1, . . . , n).

If we denote with C union of these discs, then all eigenvalues of matrix A are in C.

Proof. Let λ be eigenvalue of matrix A, and ~x corresponding eigenvector normalized so that ‖~x‖∞ =
max

i
|xi| = |xm| = 1. Then λ~x = A~x, i.e.

(λ− aii)xi =
∑

j=1
j 6=i

aijxj (i = 1, . . . , n),

wherefrom for i = m we have

|λ− amm| ≤
n

∑

j=1
j 6=m

|aij | · |xj | ≤
n

∑

j=1
j 6=m

|aij | = rm.

Well, eigenvalue λ lies in the disc C. Because λ is arbitrary eigenvalue, we conclude
that all eigenvalues are in union of discs, i.e. C.

Lesson V - Eigensystems 55

Remark 5.1.1. Regarding fact that matrix AT has same eigenvalues as matrix A, on the basis of
previous theorem one can conclude that all eigenvalues of matrix A are located in the union of D discs

Dj = {z | |z − ajj | ≤ sj} (j = 1, . . . , n),

where sj =
n
∑

i=1
i 6=j

|aij |.

Based on previous one concludes that all eigenvalues of matrix A lie in the cut of
sets C and D.

Theorem 5.1.2. If m discs from Theorem 5.1.1 form connected area which is isolated from other discs,
then exact m eigenvalues of matrix A are located in this area.

The proof of this theorem could be found in extraordinary monograph of Wilkinson
[7].

Example 5.1.1.

Take matrix

A =





1 0.1 −0.1
0 2 0.4

−0.2 0 3



 .

Based on theorem 5.1.1 eigenvalues are located in discs

C1 = {z | |z − 1| ≤ 0.2}, C2 = {z | |z − 2| ≤ 0.4}, C3 = {z | |z − 3| ≤ 0.2}.

Note that, based on remark 5.1.1, it follows that discs D1, D2, D3 have radiuses 0.2, 0.1, 0.5,
respectively. By the way, the exact values of eigenvalues, given with seven figures, are
λ1 = 0.9861505, λ2 = 2.0078436, λ3 = 3.0060058, and normed characteristic polynomial is

H(λ) = λ3 − 6λ2 + 10.98λ− 5.952.

Theorem on localization of eigenvalues has theoretical and practical importance (for
example, for determining initial values at iterative methods, for analysis at perturbation
problems, etc).

For determining eigenvalues there are a lot of methods, whereby some of them
enable finding of all eigenvalues, and others only some of them, for example, dominating
ones, i.e. with maximum modulus. Some of methods perform only determination of
coefficients of characteristic polynomial, so that some of methods for solution of algebraic
equations have to be used (see Chapter 6). Such approach is not recommended, being in
most cases numerically unstable, i.e. ill conditioned. Namely, because the coefficients
of characteristic polynomials are, in general, subjects to round-off error, due to ill-
conditioning of characteristic polynomials, the big errors in eigenvalues occur.

5.2 Methods for determination of characteristic polynomial

In this section we will induce some methods for determining of characteristic poly-
nomial of matrix A = [aij],

(5.2.1) P (λ) = det(A− λI).

As previously said, it is not to be recommended to use polynomial obtained in this
way for determining of eigenvalues and eigenvectors of A except in the case of well
conditioned characteristic polynomial.

56 Numerical Methods in Computational Engineering

1. Krylov’s method . Instead of (5.2.1) we will consider normalized characteristic
polynomial

(5.2.2) H(λ) = (−1)nP (λ) = λn − p1λn−1 + p2λn−2 − · · ·+ (−1)npn.

Based on Cayley-Hamilton theorem (Theorem 2.3.1) we have

H(A) = An − p1An−1 + p2An−2 − · · ·+ (−1)npnI = 0.

Let now ~y(0) be arbitrary n-dimensional vector, with which multiply right-hand side of
previous equation. Then we get

p1An−1~y (0) − p2An−2~y (0) + · · ·+ (−1)npn~y (0) = An~y (0),

wherefrom, using coordinate representation, we get the system of linear equations

(5.2.3)











y(n−1)
1 −y(n−2)

1 . . . (−1)n−1y(0)
1

y(n−1)
2 −y(n−2)

2 . . . (−1)n−1y(0)
2

...
y(n−1)

n −y(n−2)
n . . . (−1)n−1y(0)

n











·









p1

p2
...

pn









=











y(n)
1

y(n)
2
...

y(n)
n











,

where we put
~y (k) = A(0)~y (0) =

[

y(k)
1 y(k)

2 . . . y(k)
n

]T
(k = 1, 2, . . . , n).

Note that the degrees of matrix Ak are not to be calculated, but the recursion of form

(5.2.4) ~y (k) = A~y (k−1) (k = 1, . . . , n)

should be applied.
Under condition that matrix of obtained system of linear equations (5.2.3) is regular,

by solving this system we get the coefficients p1, p2, . . . , pn. If the matrix of system is
singular, the starting vector ~y (0) has to be changed.

Let us illustrate the application of this method to the finding out the characteristic
polynomial of matrix of order four.

Example 5.2.1. Let

A =







3 2 −2 −1
−1 3 −1 0
1 −2 4 1
3 0 1 3





 .

If we take ~y (k) = [1 0 0 0]T , using (5.2.4) we get

~y (1) = A~y (0) =







3
−1
1
3





 , ~y (2) = A~y (1) =







2
−7
12
19





 ,

~y (3) = A~y (2) =







−51
−35
83
75





 , ~y (4) = A~y (3) =







−464
−137
426
155





 ,

Thus, system (5.2.3) becomes






−51 −2 3 −1
−35 7 −1 0
83 −12 1 0
75 −19 3 0





 ·







p1

p2

p3

p4





 =







−464
−137
426
155





 ,

Lesson V - Eigensystems 57

wherefrom we get
p1 = 13, p2 = 67, p3 = 151, p4 = 120.

Accordingly, we have

H(λ) = P (λ) = λ4 − 13λ3 + 67λ2 − 151λ + 120.

Check the previous result out by Mathematica session and write a procedure for
Krylov’s method in Mathematica and Delphi (Pascal).

2. Leverrier’s method and Faddeev’s modification.
Leverrier’s method is based on known Newton’s formulas for sums of degrees of all

zeros of polynomial. Let λ1, . . . , λn be eigenvalues of matrix A, i.e. zeros of polynomial
(5.2.2), where every zero is taken as many times as its multiplicity. Then for sums

sm = λm
1 + λm

2 + · · ·+ λm
n (m = 0, 1, . . . , n)

hold Newton formulas (see, for example, [21, pp. 241-242])

sm − p1sm−1 + p2sm−2 − · · ·+ (−1)m−1pm−1s1+(−1)mmpm = 0

(m = 1, . . . , n)

wherefrom we have
p1 = s1,

p2 = −1
2
(s2 − p1s1),

p3 =
1
3
(s3 − p1s2 + p2s1),

...

pn =
(−1)n−1

n
(sn − p1sn−1 + · · ·+ (−1)n−1pn−1s1).

Thus, if all sums are known, we can determine coefficients of characteristic polyno-
mials. Notice that

s1 = λ1 + λ2 + · · ·+ λn = trA =
n

∑

i=1

aii.

Since λm
1 , λm

2 , . . . , λm
n are eigenvalues of matrix Am (see theorem 5.0.2.), we conclude that

sm = trAm.

Thus, when Am = [a(m)
ij]n×n we have sm =

n
∑

i=1
a(m)

ii , whereby degrees of matrices are deter-

mined successively using
Am = A ·Am−1.

Example 5.2.2.

For matrix from previous example we have in turn

A2 = A ·A =







2 16 −17 −8
−7 9 −5 0
12 −12 17 6
19 4 1 7





 ,

A3 = A ·A2 =







−51 86 −98 −43
−35 23 −15 2
83 −46 62 23
75 48 −31 3





 ,

A4 = A ·A3 =







−464 348 −411 −174
−137 29 −11 26
426 −96 151 48
155 356 −319 −97





 .

58 Numerical Methods in Computational Engineering

Because of
s1 = trA = 3 + 3 + 4 + 3 = 13,

s2 = trA2 = 2 + 9 + 17 + 7 = 35,

s3 = trA3 = −51 + 23 + 62 + 3 = 37,

s4 = trA4 = −464 + 29 + 151− 97 = −381,

we have, in turn
p1 = 13,

p2 = −(35− 13 · 13)/2 = 67,

p3 = (37− 13 · 35 + 67 · 13)/3 = 151,

p4 = −(−381− 13 · 37 + 67 · 35− 151 · 13)/4 = 120.

A modification of Leverrier method have been invented by Faddeev. This modification
requires less numerical operations, as follows.

In spite of m-th degree of matrix, Am, a sequence of matrices Am (m = 1, . . . , n) is
obtained using formulas

Am = ABm−1, qm =
1
m

trAm, Bm = Am − qmI,

where for B0 is taken unit matrix.
Using induction one can prove that qm = (−1)m−1pm (m = 1, . . . , n).

Example 5.2.3.

For matrix from previous example, using method of Faddeev, we have successively

A1 = A, q1 = trA1 = 13, B1 = A1 − 13I

=







−10 2 −2 −1
−1 −10 −1 0
1 −2 −9 1
3 0 1 −10





 ,

A2 = AB1 =







−37 −10 9 5
6 −30 8 0
−1 14 −35 −7
−20 4 −12 32





 , q2 =
1
2
trA2 = −67,

B2 = A2 + 67I =







30 −10 9 5
6 37 8 0
−1 14 32 −7
−20 4 −12 35





 ,

A3 = AB2 =







124 12 −9 −6
−11 107 −17 2
−6 −24 109 12
29 −4 23 113





 ,

q3 =
1
3
trA3 = 151, B3 = A3 − 151I =







−27 12 −9 −6
−11 −44 −17 2
−6 −24 −42 12
29 −4 23 −38





 ,

A4 = AB3 =







−120 0 0 0
0 −120 0 0
0 0 −120 0
0 0 0 −120





 , q4 =
1
4
trA4 = −120

Thus, p1 = q1 = 13, p2 = −q2 = 67, p3 = q3 = 151, p4 = −q4 = 120.
3. Method of Danilevsky.

Lesson V - Eigensystems 59

This method is based on transformation of matrix to so known Frobenius form

(5.2.5) F =













f1 f2 . . . fn−1 fn

1 0 0 0
0 1 0 0
...
0 0 1 0













,

where matrices A and F are similar, i.e. there exists such regular matrix C that
F = C−1AC (see Definition 5.0.5). In regard to fact that similar matrices have identical
characteristic polynomials, based on (5.2.5) it is simple to get characteristic polynomial
of matrix A. Namely, if we develop det(F− λI) up to elements of first column, we get

P (λ) = (f1 − λ)(−λ)n−1 − f2(−λ)n−2 + · · ·+ (−1)n−1fn,

i.e.
P (λ) = (−1)n(λn − f1λn−1 − f2λn−2 − · · · − fn).

Thus, pm = (−1)m−1fm (m = 1, . . . , n).
Let us define for row-vector ~z = [z1 z2 · · · zn] square matrix of order n

Gr(~z =)
[

In−r On−r,r

Pr,n−r(~z) Rr(~z)

]

,

where In−r unit matrix of order n−r, On−r,r null-matrix of type r×(n−r), Pr,n−r(~z) rectan-
gular matrix of type r× (n−r), which has in first row successively elements z1, z2, . . . , zn−r,
while all other elements are equal to zero, and finally, Rr(~z) is square matrix of order r
which differs from unit matric only by first row, which contains the residual elements
of vector ~z, i.e. has in turn, the elements zn−r+1, . . . , zn.

Suppose that zn−r+1 6= 0. Using theorem on inverting of block structured matrices
(see [1], p.205) it is easy to find inverse matrix of Gr(~z)

G−1
r (~z) =





In−r On−r,r

−Pr,n−r(~z)
zn−r+1

R−1
r (~z)



 ,

where

Rr(~z) =













1
zn−r+1

−zn−r+2

zn−r+1
· · · − zn

zn−r+1
1

. . .
1













,

Let A(k) matrix of order n, which rows are vectors ~a (k)
1 , . . . ,~a (k)

n , i.e.

A(k)
n =)







~a (k)
1
...

~a (k)
n





 ,

Put now A(1) = A, where A is given matrix whose Frobenius form we are looking for.
By direct multiplication it can be shown that using sequence of transformations

A (2) = G2(~a (1)
n)A(1)G−1

2 (~a (1)
n) (a(1)

n,n−1 6= 0),

A(3) = G3(~a
(2)
n−1)A

(2)G−1
3 (~a(2)

n−1) (a(2)
n−1,n−2 6= 0),

...
A(n) = Gn(~a(n−1)

2)A(n−1)G−1
n (~a(n−1)

2) (a(n−1)
2,1 6= 0),

60 Numerical Methods in Computational Engineering

one gets the Frobenius form F = An. Thereby

C = G−1
2 (~a(1)

n)G−1
3 (~a(2)

n−1) . . .G−1
n (~a(n−1)

2)

and

C−1 = Gn(~a(n−1)
2)G−1

n−1(~a
(n−2)
3) . . .G2(~a(1)

n).

Example 5.2.4.

For matrix from previous example, we have in succession

G2 = G2(3, 0, 1, 3) =







1 0 0 0
0 1 0 0
3 0 1 3
0 0 0 1





 ,

G−1
2 =







1 0 0 0
0 1 0 0
−3 0 1 −3
0 0 0 1





 ,

A(2) = G2AG−1
2 =







9 2 −2 5
2 3 −1 3
16 4 1 4
0 0 1 0





 ,

G3 = G3(16, 4, 1, 4) =







1 0 0 0
16 4 1 4
0 0 1 0
0 0 0 1





 ,

G−1
3 =







1 0 0 0
−4 1/4 −1/4 −1
0 0 1 0
0 0 0 1





 ,

A(3) = G3A(2)G−1
3 =







1 1/2 −5/2 3
−24 12 −43 48
0 1 0 0
0 0 1 0





 ,

G4 = G4(−24, 12,−43, 48) =







−24 12 −43 48
0 1 0 0
0 0 1 0
0 0 0 1





 ,

G−1
4 =







−1/24 1/2 −43/24 2
0 1 0 0
0 0 1 0
0 0 0 1





 ,

F = A(4) = G4A(3)G−1
4 =







13 −67 151 −120
1 0 0 0
0 1 0 0
0 0 1 0





 .

5.3. Methods for dominant eigenvalues

Very often, in many applications (i.e. in dynamic of constructions), one needs only
maximal (by module) eigenvalue and corresponding eigenvector.

Let λ1, . . . , λn be eigenvalues and ~x1, . . . , ~xn corresponding eigenvectors of matrix A =
[aij]n×n. If

|λ1| = . . . = |λr| > |λr+1| ≥ . . . ≥ |λn|

Lesson V - Eigensystems 61

we say that λ1, . . . , λr are dominant eigenvalues of matrix A. In this section we will
consider a method for determination of dominant eigenvalue and corresponding eigen-
vector, as well as some modifications of this method. We suppose that eigenvectors are
linearly independent, forming a basis in Rn. Therefore, the arbitrary non-zero vector ~v0

can be expressed as

(5.3.1) ~v0 =
n

∑

i=1

αi~xi,

where αi some scalars. Define now the iterative process

~vk = A~vk−1 (k = 1, 2, . . .).

Then
~vk = A~vk−1 = A2~vk−2 = . . . = Ak~v0 =

n
∑

i=1

αiAk~xi,

or, regarding to (5.3.1) and assertion of Theorem 5.0.2,

(5.3.2) ~vk =
n

∑

i=1

αiλk
i ~xi.

The special interesting case here is when one dominant eigenvalue λ1 (r = 1) exists.
Assuming α1 6= 0, on the basis of (5.3.2) we have

~vk = α1λk
1(~x1 +

n
∑

i=1

αi

α1
(
λi

λ1
)k~xi) = α1λk

1(~x1 + ~εk),

where ~εk → 0, when k →∞.
Introduce now notation (~y)i for i-th coordinate of some vector ~y. Then i-th coordinate

of vector ~vk is
(~vk)i = α1λk

1

(

(~x1)i + (~εk)i
)

.

Because of
~vk+1 = α1λk+1(~x1 + ~εk+1),

based on previous, for every i (1 ≤ i ≤ n) we have

(~vk+1)i

(~vk)i
= λ1

(~x1)i + (~εk+1)i

(~x1)i + (~εk)i
→ λ1 (k →∞).

Based on this fact, the method for determination of dominant eigenvalue λ1, knows as
power method, can be formulated. Vector ~vk is thereby an approximation of non-normed
eigenvector which corresponds to dominant eigenvalue*. By practical realization of this
method the norming of eigenvector is performed, i.e. of vector ~vk after every iteration
step. Norm-setting is performed by dividing vector ~vk by its coordinate with maximal
module. So, power method can be expressed by

~zk = A~vk−1, ~vk = ~zk/γk,

where γk coordinate of vector ~zk with maximal module, i.e. , γk = (~zk)i and |(~zk)i| = ‖~zk‖.
Note that γk → λ1 and ~vk →

~x1

‖~x1‖∞
, when k → +∞.

* If ~x eigenvector, then c~x (c 6= 0) is also eigenvector corresponding to the same
eigenvalue.

62 Numerical Methods in Computational Engineering

Speed of convergence of this method depends on ratio |λ1/λ2|. Namely, it holds

(5.3.3) |λ1 − γk| = O(|λ2

λ1
|k).

Note that by deriving of this method we suppose that α1 6= 0, meaning that method
converges if λ1 is dominant eigenvalue and if initial vector ~v0 has a component with same
direction as eigenvector ~x1. On behavior of this method without those assumptions
one can find in the monograph of Wilkinson [7, p. 570] and Parlett and Poole [11].
Practically, due to round-off errors in iterative process, the condition α1 6= 0 will be
satisfied after few steps, although starting assumption for vector ~v0 not being fulfilled.

Example 5.3.1.

Let

A =





−261 209 −49
−530 422 −98
−800 631 −144



 ,

with eigenvalues λ1 = 10, λ2 = 4, λ3 = 3.
By taking for initial vector ~v0 = [0 0 − 1]T , by power method we get the results

given in Table 5.3.1.

Table 5.3.1
k γk (~vk)1 (~vk)2 (~vk)3
1 144.0000 0.340278 0.680556 1.
2 13.2083 0.334911 0.669821 1.
3 10.7287 0.333774 0.667549 1.
4 10.2038 0.333463 0.666926 1.
5 10.0599 0.333372 0.666744 1.
6 10.0179 0.333345 0.666690 1.
7 10.0054 0.333337 0.666674 1.
8 10.0016 0.333334 0.666669 1.
9 10.0005 0.333334 0.666667 1.
10 10.0001 0.333333 0.666667 1.
11 10.0000 0.333333 0.666667 1.

Because of linear convergence of the power method, for convergence acceleration the
Aitken δ2 method can be used. A simple method for convergence acceleration is given
in [1], pp. 303-305.

5.4 Methods for subdominant eigenvalues

Suppose that eigenvalues of matrix A are ordered in a way

|λ1| > |λ2| > · · · > λn.

In this section the methods for determination of subdominant eigenvalues, i.e.
λ2, λ3, . . . , λm (m < n) will be considered. The three methods will be explained.

1. Method of orthogonalization. Suppose, at first, that matrix A is symmetric, and
that eigenvector x1 which corresponds to dominant eigenvalue λ1 (λ1| > |λi|, i = 2, . . . , n)
has been determined by, for example, power method. Starting with arbitrary vector ~z,
let us form vector ~v0 which is orthogonal to vector ~x1. So we have (see Gram-Schmidt’s
method of orthogonalization)

(5.4.1) ~v0 = ~z − (~z, ~x1)
(~x1, ~x1)

~x1.

Lesson V - Eigensystems 63

Because of (~v0, ~x1) = 0, from theoretical point of view, the series ~vk = A~vk−1 (k = 1, 2, . . .) in
the power method could be used for determination of λ2 and corresponding eigenvector
~x2. Nevertheless, regardless of fact that ~v0 does not have the component in direction
of eigenvector ~x1 power method would, because of round-off errors, after some number
of iterations, converge toward eigenvector ~x1. This fact was mentioned in the previous
section.

It is possible to eliminate this influence of round-off errors using so known periodical
”purification” of vector v0 from component in direction of ~x1. That means that, after,
say, r steps, we compute ~v0 using ~vr in spite of ~z in (5.4.1), i.e. by means

~v0 = ~vr −
(~vr, ~x1)
(~x1, ~x1)

~x1.

In this way, if the period of ”purification” is small enough so that it cannot happen sig-
nificant accumulation of round-off error, by power method can be determined eigenvalue
λ2 and eigenvector ~x2.

By continuation of this procedure we can further determine λ3 and ~x3.
Generally, if we determine λ1, . . . , λν and corresponding vectors ~x1, . . . , ~xν (ν < m) it is

possible to determine λν+1 and ~xν+1 by power method, by forming vector ~v0 orthogonal
to ~x1, . . . , ~xν. So, starting from arbitrary vector ~z, we have

(5.4.2) ~v0 = ~z −
ν

∑

i=1

(~z, ~xi)
(~xi, ~xi)

~xi,

meaning that vector ~v0 has components only in direction of residual eigenvectors, i.e.

~v0 = αν+1~xν+1 + . . . + αn~xn.

Power method applied to ~v0 gives ~xν+1 and λν+1 in absence of round-off errors. Being
not the case, it is necessary frequent ”purification” of vector ~vk from components in
direction ~x1, . . . , ~xn. In other words, after r steps, one should determine again ~v0 using
(5.4.2), by using ~vr in spite of ~z.

Also, in the case when matrix A is not symmetric, but has complete system of
eigenvectors, the given orthogonalizing procedure can be applied.

2. Inverse iteration method. This method is applied to general matrix A and is
based on solution of system of equations

(5.4.3) (A− pI)~vk = ~vk−1,

where p is constant, and ~v0 arbitrary vector. System (5.4.3) is usually to be solved by
Gauss method of elimination or Cholesky method by factorization of matrix B = A− pI.
Note that the method of inverse iteration is equivalent to the power method applied
to B. Therefore, by applying method of inverse iteration the dominant eigenvalue of
matrix Bis obtained, i.e. µν = 1/(λν − p) for which it holds

min
j
|λj − p| = |λν − p|.

Eigenvalue λν is closest eigenvalue of matrix A to the number p. Eigenvector obtained
thereby is the same one for matrices B and A.

By convenient choice of parameter p all eigenvalues of matrix A can be, in principle,
obtained.

Similar to power method, here is also suitable to perform norming of vector ~vk so
that we have

(5.4.4) B~zk = ~vk−1, ~vk = ~zk/γk,

where γk is coordinate of vector ~zk with greatest module.

64 Numerical Methods in Computational Engineering

Example 5.4.1.

Using method of inverse iteration for matrix

A =





4 1 4
1 10 1
4 1 10



 ,

we will determine eigenvalue closest to number p = 9, as well as corresponding eigenvec-
tor.

Using factorization by Gauss method with pivoting for matrix B = A− 9I, we get

LR = PB

where

L =





1 0 0
−4/5 1 0
−1/5 2/3 1



 , R =





−5 1 4
0 9/5 21/5
0 0 −1





and permutation matrix P defined by index series I = (1, 3).
The method of inverse iteration (5.4.4) can now be expressed in the form

L~yk = p~vk−1, R~zk = ~yk, ~vk = ~zk/γk,

by which application the results given in Table 5.4.1. are obtained.

Table 5.4.1
k (~vk)1 (~vk)2 (~vk)3 βk

1 0. 1. −1. 6.
2 −0.2 1. −0.5 9.3
3 −0.17241 1. −0.48276 9.34483
4 −0.17200 1. −0.48000 9.34800
5 −0.17185 1. −0.47980 9.34835
6 −0.17184 1. −0.47977 9.34838

For initial vector we took ~v0 = [1 0 0]T . In the last column of table is given the
quantity βk = p + 1/γk, which gives approximation for corresponding eigenvalue λ. One
can see that this eigenvalue has approximate value 9.34838.

3. Deflation method. The methods of this kind are composed from construction of
sequence of matrices An (= A), An−1, . . . ,A1, which order is equal to index and thereby

Sp(An) ⊃ Sp(An−1) ⊃ · · · ⊃ Sp(A1),

where Sp(Ak) denotes spectrum of matrix Ak.
We will describe now a special and important case of deflation method, when matrix

A is Hermitian.
Let ~x = [x1 x2 . . . xn]T be eigenvector of matrix A corresponding to eigenvalue λ and

normed
(~x, ~x) = ~x ∗ ~x = ‖~x‖2E = 1

with first coordinate x1 being nonnegative.
Have a look over matrix

(5.4.5) P = I− 2~w~w∗,

Lesson V - Eigensystems 65

where the vector ~w = [w1 w2 . . . wn]T is defined by first vector ~e1 = [1 0 . . . 0]T from natural
basis space Rn in the following way:

(5.4.6) ~w ∗ ~w = ‖~x‖2E = 1 w1 ≥ 0,

(5.4.7) P~e1 = ~x.

The matrix P is of form

P =









1− 2w1w̄1 −2w1w̄2 . . . −2w1w̄n
−2w2w̄1 1− 2w2w̄2 −2w2w̄n

...
−2wnw̄1 −2wnw̄2 1− 2wnw̄n









.

Note that P∗ = P, what means that matrix P is Hermitian, too. Moreover, regarding
to (5.4.6), by direct multiplication we see that

P∗P = P2 = I,

and conclude that matrix P is unitary.
Based on (5.4.7) we find coordinates of vector w. So, from 1 − 2ww̄1 = x1 and

−2wkx̄k (k = 2, . . . , n) it follows

w1 =

√

1− x1

2
and wk = − xk

2w1
(k = 2, . . . , n).

Note that w̄1 = w1 > 0.
Now, based on (5.4.7) and A~x = λ~x we find that AP~e1 = P~e1, wherefrom we conclude

that P∗AP~e1 = λ~e1, i.e. ~e1 is eigenvector of matrix B = P∗AP = PAP. Note, also, that
first column in matrix B is just vector λ~e1, i.e.

B =













λ b12 b13 · · · b1n
0 b22 b23 b2n

0 b32 b33 b3n
...
0 bn2 bn3 bnn













=
[

λ ~bT
n−1

~0n−1 An−1

]

,

where with An−1 we denoted matrix of order n − 1 which matches with enclosed block,
~0n−1 is zero-vector of order n− 1, and, finally, ~bT

n−1 = [b12 b13 · · · b1n]T .
Regarding the fact that matrix B is similar (we say also unitary similar) to matrix

A , we conclude that
Sp(An−1) = Sp(An)\(λ) (An = A).

In order to get matrix An−2 we are proceeding in a similar way. In spite of matrix P we
use matrix

P1 =
[

1 ~0T
n−1

~0n−1 Q

]

,

where matrix Q is of order n−1and of form (5.4.5), satisfying the conditions (5.4.6) and
(5.4.7) regarding eigenvector ~y and eigenvalue ν of matrix An−1. Because of P−1

1 = P∗1 = P1

we conclude that matrix P1 is unitary, too.
Now matrix C = P1BP1 = P1PAPP1 has a form

66 Numerical Methods in Computational Engineering

P1 =













λ c12 c13 · · · c1n

0 µ c23 c2n

0 0 c33 c3n
...
0 0 cn3 cnn













=













λ c12 c13 · · · c1n
0 µ c23 c2n

0 0
... An−2
0 0













,

where matrix An−2 is of order n−2. By continuing this procedure we get upper triangular
matrix which is unitary similar to initial matrix A. Having in mind that matrix A is
Hermitian, we conclude that it is unitary similar to diagonal matrix.

The presented procedure demands before of every step determination of one eigen-
value and corresponding eigenvector, what can be done by some of previously presented
methods. Thus, before the first step, one has to determine eigenvalue λ and eigenvector
~x of matrix A, before the second step eigenvalue µ and eigenvector ~y of matrix of n − 1
order An−1, and so on.

It is clear that eigenvalues of matrix A are diagonal elements of obtained triangular
matrix, i.e. λ1 = λ, λ2 = µ, etc. It remains the question what is with eigenvectors of
matrix A ? It is clear that ~x1 = ~x. We will show how, based on obtained results, the
second eigenvector of matrix A can be found.

If the coordinates of eigenvector ~y are y2, . . . , yn, in order to find, at first, eigenvector
~y ′ of matrix B, put ~y ′ = [y1 y2 . . . yn]T and try to determine y1.

Because of

B~y ′ =
[

λ ~bT
n−1

~0n−1 An−1

]

.
[

y1

~y

]

=
[

λy1 +~bT
n−1~y

An−1~y

]

,

i.e.

B~y ′ =
[

λy1 +~bT
n−1~y

µ~y

]

,

it follows
y1 +~bT

n−1~y = y1.

If λ 6= µ, by virtue of previous equality we get

y1 =
1

λ− µ
~bT

n−1~y =
1

λ− µ
(b12y2 + · · ·+ b1nyn).

Now simply find the eigenvector ~x2 of matrix A, corresponding to eigenvalue λ2 6= µ.
Indeed, because of PAP~y ′ = µ~y ′, i.e. A(P~y ′) = µ(P~y ′) we conclude that ~x2 = P~y ′.

In a similar way the other eigenvectors can be determined.

5.5. Jacobi method

In this section we begin presentation of method for solving a complete problem of
eigenvalues, i.e. for determination of all eigenvalues and corresponding eigenvectors.
The method presented in this section originates from C.G.J. Jacobi (1846), and can be
applied on Hermitian matrices. Jacobi method is based on transformation of Hermitian
matrix A to diagonal matrix D, which eigenvalues are diagonal elements. It is known
that exists unitary matrix H such that

(5.5.1) H∗AH = D.

Because of H∗ = H−1 in virtue of (5.5.1) matrices A and D are similar and have same
eigenvalues.

Consider first the transformation

(5.5.2) B = R∗AR,

where R is arbitrary unitary matrix.

Lesson V - Eigensystems 67

Theorem 5.5.1. Matrices B and A from (5.5.2) have same Schmidt norms, i.e. ε(B) = ε(A).

Proof.

Matrices A and B are similar. Let λi (i = 1, 2, . . . , n) be their eigenvalues. Because of

ε(A)2 =
n

∑

i,j 6=1

|aij |2 = tr(A∗A) = tr(A2) =
n

∑

i=1

λ2
i ,

we conclude that ε(B) = ε(A)
The basic idea in Jacobi method is construction of series of similar matrices {Ak}k∈N ,

starting from A1 = A, with strategy of minimization of value od(Ak) where with od is
denoted ”norm” of elements of matrix A out of diagonal, i.e.

od(A) =
n

∑

i=1

n
∑

j=1
j 6=i

|aij |2.

Note that od(A) + d(A) = ε(A), where d(A) =
n
∑

i=1
|aij |2. Strategy of minimization should

provide
od(Ak+1) ≤ od(Ak) and lim

k→+∞
od(Ak) = 0.

It remains the question how to generate series Ak, i.e. which unitary matrices should
be used for transformation of Ak to Ak+1.

Look at so known rotation matrix R = R(p, q) with elements

rpp = eiα cos θ, rpq = eiβ sin θ,

rqp = −e−iβ sin θ, rqq = e−iα cos θ,

rij = δij (in other cases),

where θ, α, β are real numbers. By direct multiplication we show that R∗R = I, i.e. the
rotation matrix is unitary. We call usually this matrix elementary matrix of rotation
with angle θ in the plane (p, q).

In spite of being applicable for Hermitian matrices, due to simplicity we will present
Jacobi method for the case when A is real symmetric matrix. In favor of this is the fact
that problem of eigenvalues of Hermitian matrix A of order n can reduce to problem of
eigenvalue of symmetric matrix of order 2n. Namely, matrix A can be decomposed to
two real matrices S and K in form A = S + iK, where S is symmetric, and K angular-
symmetric matrix. Eigenvalue λ and eigenvector ~v = ~x + i~y of matrix A satisfy equality

[

S −K
K S

]

·
[

~x
~y

]

= λ
[

~x
~y

]

,

whereby if λ is simple eigenvalue of matrix A then it is double for matrix of order 2n
which appears in (5.5.3).

From previously noted reasons we suppose that A is real symmetric matrix. In
rotation matrix we can take α = β = 0, so that this matrix is now orthogonal. Therefore,
we have

rpp = cos θ = c, rpq = sin θ = s,

rpq = − sin θ = −s, rqq = cos θ = c,

rij = δij (in other cases).

Note that elements of matrix B in transformation

(5.5.4) B = RT AR

68 Numerical Methods in Computational Engineering

coincide with corresponding elements of matrix A, beside those located in p−th and
q−th row and column. Moreover, we have

(5.5.5)
[

bpp bpq

bqp bqq

]

=
[

c −s
s c

] [

app apq
aqp aqq

] [

c s
−s c

]

,

wherefrom, regarding to the statement of theorem 5.5.1, we find

b2
pp + 2b2

pq + b2
qq = a2

pp + 2a2
pq + a2

qq.

Since, again according to theorem 5.5.1, ε(A) = ε(B) we have

od(B) = ε(B)− d(B) = ε(A) d(B),

i.e.
od(B) = od(A) + d(A)− d(B),

= od(A) + a2
pp + a2

qq − (b2
pp + b2

qq)

= od(A) + 2b2
pq − 2a2

pq,

wherefrom we see that od(B) will be minimized if bpq = 0. Using this condition we will
derive c = cos θ and s = sin θ in rotation matrix.

Since, based on (5.5.5),

bpq = (c2 − s2)apq + cs(app − aqq),

we derive
(cos2 θ − sin2 θ)apq + cos θ sin θ(app − aqq) = 0,

i.e.
τ = cot(2θ) =

aqq − app

2apq
(apq 6= 0).

If apq = 0, we have c = 1 and s = 0, what means that R is unit matrix. Put tan θ = t.
Because of cot(2θ) = (1− t2)/2t = τ , for determination of t the following quadratic equation
should be solved

t2 + 2τt− 1 = 0.

Usually one takes the solution with lower absolute value, i.e.

t =
sgnτ

|τ |+
√

τ2 + 1
,

what ensures the condition that rotation angle is |θ| ≤ π/4. Then, the elements of rotation
matrix are

c =
1√

1 + t2
and s = tc.

With in this way determined matrix of rotation R, ”norm” of off-diagonal elements of
matrix B in (5.5.4) is minimized, whereby element on the position (p, q) is zeroed. This
procedure is repeated, i.e. the series of similar matrices is generated,

(5.5.6) Ak+1 = RT
k AkRk (k = 1, 2, . . .),

starting with A1 = A, where remains the open question how to chose rotation matrix
Rk = Rk(p, q), i.e. pairs (p, q) on every step in (5.5.6). At classical Jacobi method for (p, q)
is taken position of dominant element, i.e. off-diagonal element of matrix Ak = [a(k)

ij]
with greater absolute value. Thus, (p, q) is to be determined from the condition

|a(k)
pq | = max

i<j
|a(k)

ij |.

Lesson V - Eigensystems 69

The elements of matrix Ak which change during transformation (5.5.6) are only those
located in p-th and q-th row and column:

{

a(k+1)
ip = a(k+1)

pi = ca(k)
ip − sa(k)

iq

a(k+1)
iq = a(k+1)

qi = sa(k)
ip + ca(k)

iq

}

(i 6= p, q),

a(k+1)
pp = c2a(k)

pp − 2csa(k)
pq + s2a(k)

qq ,

a(k+1)
qq = s2a(k)

pp + 2csa(k)
pq + c2a(k)

qq ,

a(k+1)
pq = a(k+1)

qp = 0

.

For such constructed method we have Ak → D = [λiδij], when k → +∞. Indeed,
regarding to inequality

2(a(k)
pq)2 ≥ 1

N
od(Ak) (N =

1
2
n(n− 1)),

we have
od(Ak+1) = od(Ak)− 2(a(k)

pq)2 ≤ (1− 1
N

)od(Ak),

i.e.
od(Ak) ≤ (1− 1

N
)k−1od(A),

wherefrom it follows lim
k→+∞

od(Ak) = 0, i.e. lim
k→+∞

od(Ak) = D. Convergence of Jacobi
method is quadratic in a sense that there exists constant M (> 0) such that for enough
large k

od(Ak+N) ≤ M(od(Ak))2.

By virtue of (5.5.6) we can write

(5.5.7) Ak+1 = HT
k AkHk,

where Hk = R1R2 . . .Rk. For k large enough, matrix Hk can be treated as good enough
approximation for unitary matrix H which appears in (5.5.1). Jacobi iterative process
(5.5.6) usually stops when odAk+1 ≤ δ2 where δ is exactness given in advance.

In classical Jacobi method good deal of time could be spent for determination of
position of dominant element. One modification of classic Jacobi method, known as
cyclic Jacobi method , takes for (p, q) successively the pairs:

(1, 2), (1, 3), . . . , (1, n); (2, 3), . . . , (2, n); . . . , (n− 1, n); (1, 2), . . .

It can be shown that this method has also quadrat convergence.
If k is large enough in (5.5.7), so that criteria for process termination is fulfilled, we

can consider that
HT

k AkHk = Ak+1 = D = [λiδij]n×n,

wherefrom it follows
AHk = HkD,

what means that columns of matrix Hk are eigenvectors of matrix A.
Moreover, these eigenvectors form orthogonal set. Matrix Hk = [h(k)

ij]n×n can be
generated recursively using rotation matrix

Hk = Hk−1Rk(p, q) (H0 = I).

In scalar form we have
{

h(k+1)
ip = c h(k)

ip − s h(k)
iq

h(k+1)
iq = s h(k)

ip + c h(k)
iq

}

(i = 1, 2, . . . , n),

70 Numerical Methods in Computational Engineering

h(k+1)
ij = h(k)

ij in other cases .

Example 5.5.1.

We will apply classic Jacobi method on matrix A from example (5.4.1). Put

A1 = A =





4 1 4
1 10 1
4 1 10



 .

Dominant element is on position (p, q) = (1, 3). Then

τ =
a33 − a11

2a13
=

3
4
, t =

1
2
, c = c1 =

2√
5
, s = s1 =

1√
5
,

so that

R1 = R1(1, 3) =





2/
√

5 0 1/
√

5
0 1 0

−1/
√

5 0 2/
√

5



 ,

H1 = R1, A2 =





2 1/
√

5 0
1/
√

5 10 3/
√

5
0 3/

√
5 12



 .

By continuing this procedure we get the following results:
a) For elementary rotation matrices:

Table 5.5.1
k (p, q) ck sk

2 (2, 3) 0.89376 0.44855
3 (1, 2) 0.99852 0.05431
4 (1, 3) 0.99982 0.01872

b) For series Hk and Ak (matrices Ak are symmetric; elements of lower triangle are not
given):

H2 =





0.89443 −0.20060 0.39970
0. 0.89376 0.44855

−0.44721 −0.40119 0.79940



 ,

A3 =





2.00000 0.39970 0.20060
9.32668 0.00000

12.67332



 ,

H3 =





0.90400 −0.15172 0.39970
−0.04854 0.89244 0.44855
−0.42476 −0.42489 0.79940



 ,

A4 =





1.97826 0.00000 0.20030
9.34842 0.01089

12.67332



 ,

H4 =





0.89636 −0.15172 0.41655
−0.05693 0.89244 0.44756
−0.43965 −0.42489 0.79131



 ,

A5 =





1.97451 −0.00020 0.00000
9.34842 0.01089

12.67707



 .

All results are rounded to five decimals. From A5 and H4 we have eigenvalues

λ1 ∼= 1.97451, λ2 ∼= 9.34842, λ3 ∼= 12.67707,

Lesson V - Eigensystems 71

and corresponding eigenvectors

~x1 =





0.89636
−0.05693
−0.43965



 , ~x2 =





−0.15172
0.89244
−0.42489



 , ~x3 =





0.41655
0.44756
0.79131



 .

Note that in example 5.4.1 we determined by inverse matrix method eigenvalue λ2 and
corresponding eigenvector ~x2 (normed regarding to coordinate with maximal absolute
value).

Remark 5.5.1.

When solution of complete eigenvalue problem is not demanded, it is not necessary
to generate matrix Hk. For example, if needed only one eigenvector, say ~xm, then it can
be simply obtained by applying rotation on vector ~em, which m−th coordinate equals to
one, and all other are equal to zero.

5.6. Givens’ and Householder’s method

As we have seen in previous section, Jacobi method transforms symmetric (or, gen-
erally Hermitian) matrix to the diagonal one after infinity number of steps. Off-diagonal
elements (apq and aqp) which are zeroed on the distinct step of of Jacobi method, can in
later stages become such that notable deviate from zero, what is especially expressed
when matrix order is high. This fact slows algorithm. In this section we will present two
methods at which this disadvantage is eliminated. First of these methods is developed
by W.J. Givens (1954), and second by A.S. Householder (1958). The methods are such
that by definitive number of steps transform initial real symmetric matrix to symmetric,
tridiagonal matrix. In the next section we will consider problem of eigenvalues for sym-
metric tridiagonal matrix. Both methods can be simply applied to Hermitian matrices.
Moreover, their application to general matrices leads to matrix reduction to so known
Hessenberg form (aij=0 for i ≥ j + 2).

As in previous section, we will present noted methods for the case of matrix A being
real and symmetric.

1. Givens’ method. This reduction method is based on successive application of
so known Givens transformation, whereby after finite number of rotations matrix A
reduces to tridiagonal matrix.

we will call elements of matrix A = [aij]n×n for which indices it holds |i − j| > 1 off-
tri-diagonal elements. We will introduce for them such arrangement that we denote aij

as s-th off-tri-diagonal element if the pair (i, j) is s-th element of cycling index sequence

(1, 3), (1, 4), . . . , (1, n), (2, 4), (2, 5), . . . , (2, n), . . . , (n− 2, n).

Note that this sequence contains totally

M = (n− 2) + (n− 1) + · · ·+ 1 =
1
2
(n− 1)(n− 2)

pairs.
Let A1 = A and

(5.6.1) Ak+1 = GT
k AkGk, (k = 1, 2, . . . , M)

where matrices Gk, so known two-dimensional rotation, are chosen so that first k off-
tri-diagonal elements of matrix Ak+1 are equal to zero.

72 Numerical Methods in Computational Engineering

Theorem 5.6.1. (Givens) Let A be real symmetric matrix, series Ak = [a(k)
ij]n×n defined by (5.6.1) and

(p− 1, q) k-th pair of cyclic indexed series of off-tri-diagonal elements. If rotation matrix Gk = [g(k)
ij]n×n

is defined as
g(k)

pp = g(k)
qq = c, g(k)

pq = −g(k)
pq = −s,

g(k)
ij = δij (in other cases),

where
c = cos θ =

1
s
a(k)

p−1,p, s = sin θ =
1
s
a(k)

p−1,q,

s =
√

(a(k)
p−1,p)2 + (a(k)

p−1,q)2,

or using Gk = I, if a(k)
p−1,q = 0, we have

(a) Matrices Ak+1 are real and symmetric;
(b) First k off-tri-diagonal elements of matrix Ak+1 are equal to zero (k = 1, 2, . . . , M);
(c) Matrix AM+1 is tri-diagonal.

The proof can be carried out by mathematical induction. Note the basic distinction
between Givens and Jacobi method. Namely, at Jacobi method, with rotation matrix
Rk = Rk(p, q) is nullified only element on position (p, q). At Givens method we have
that in matrix Ak first k − 1 off-tri-diagonal elements equal to zero. By Givens rotation
Gk = Gk(p, q), corresponding elements in matrix Ak remain unchanged, i.e. equal to zero.
But, because of

a(k+1)
p−1,q = −a(k)

p−1,p sin θ + a(k)
p−1,q cos θ,

with choice

tan θ =
a(k)

p−1,q

a(k)
p−1,p

we have also k-th element being equal to zero, i.e. a(k+1)
p−1,q = 0. Exactly this choice of tan θ

is taken for determination of elements c and s in rotation matrix Gk.
Based on (5.6.1) we have

a(k+1)
pp = c2a(k)

pp + 2 c s a(k)
pq + s2a(k)

qq ,

a(k+1)
pq = a(k+1)

qp = (c2 − s2)a(k)
pq + c s (a(k)

qq − a(k)
pp),

a(k+1)
qq = s2a(k)

pp − 2 c sa(k)
pq + c2a(k)

qq ,

.

{

a(k+1)
ip = a(k+1)

pi = c a(k)
ip + sa(k)

iq

a(k+1)
iq = a(k+1)

qi = −sa(k)
ip + c a(k)

iq

}

(i 6= p, q),

a(k+1)
ij = a(k+1)

ji = a(k)
ij (in other cases) .

Note that Givens algorithm requires altogether M extractions of roots and approxima-
tively 4

3n3 multiplications.

Example 5.6.1.

Apply Givens method to reduction of matrix

A =







1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20





 .

to tridiagonal form. Based on previous, it is necessary M = 3 steps. Givens rotations
are thereby determined by

Lesson V - Eigensystems 73

Table 5.6.1
k (p, q) ck qk

1 (2, 3) 0.707107 0.707107
2 (2, 4) 0.816496 0.577350
3 (3, 4) 0.397360 0.917663

and corresponding sequence of symmetric matrices Ak (k = 2, 3, 4) (elements of lower
triangle are not given):

A2 =







1. 1.414214 0. 1.
7. 2. 9.899495

1. 4.242641
20.





 ,

A3 =







1. 1.732051 0. 0.
20.666667 4.082493 9.428090

1. 2.309401
6.333333





 ,

A3 =







1. 1.732051 0. 0.
20.666667 10.274023 0.

7.175493 0.364642
0.157895





 .

All results are rounded to six decimals.

2. Householder’s method. This method is based on usage of sequence of orthogonal
transformations of form

H = I− 2~w~w T , ~w T ~w = 1

with convenient chosen vectors ~w. It is not difficult to show that these matrices are
orthogonal.

Let A be real symmetric matrix of order n. Put A1= A and define the series

(5.6.2) Ak+1 = HT
k AkHk, (k = 1, 2, . . . , n− 2)

where

(5.6.3) Hk = I− 2~w~w T .

Special choice of vector ~w on every step in Householder method provides for matrix An−1

to be tridiagonal. Note that all matrices in the series Ak are real and symmetric.
The strategy of Householder’s method is that after first step the off-diagonal ele-

ments in the first row (and column) are zeroed, after second step elements in second
row (and column), etc. Thereby, previously zeroed elements are not changed. Thus, for
matrix Ak = [a(k)

ij] (k = 2, . . . , n− 1) we have

a(k)
ij = 0 (1 ≤ i ≤ k − 1 ∧ |i− j| > 1).

To secure such transformation, for ~w in (5.6.3) one shall take:

~w = ~0, if mk =
n

∑

j=k+2

(a(k)
ij)2 = 0

and
~w = β~v, if mk 6= 0.

Thereby, for coordinates of vector ~v = [v1 . . . vn]T one shell take

vi = 0 (i ≤ k), vk+1 = 2Sy2, vi = a(k)
ki (i ≥ k + 2),

74 Numerical Methods in Computational Engineering

where
S2 =

n
∑

j=k+1

(a(k)
ij)2

(

S = sgn(a(k)
k,k+1)

√
S2, if (a(k)

k,k+1 6= 0
)

,

y =
1

2K
(S + a(k)

k,k+1), 2K2 = S2 + a(k)
k,k+1S, β =

1
2Sy

.

Determination of matrix Ak+1 in (5.6.2) can be simplified, regarding the fact that

Ak+1 = (I− 2~w~wT)Ak(I− 2~w~wT)

= Ak − 2~w~wT Ak − 2Ak − 2~w~wT + 4~w~wT Ak ~w~wT ,

i.e.
Ak+1 = Ak − 2β2(~v~uT + ~u~vT),

where
~u = ~ξ − a~v, ξ = Ak~v, a = β2~v T ~ξ.

Note that Householder’s method needs n− 2 root extractions and nearly 2
3n3 multiplica-

tions, what is two times lesser than number of multiplications in Givens algorithm.

Example 5.6.2.

Apply Householder’s method on transformation of matrix A from previous example.
Now one needs only two steps (n-2=2).

First step (k=1): We have m1 = 2 6= 0, S2 = 3, S = 1.732051, K = 1.538189, y =
0.888074, β = 0.325058, a = 10.479274,

~v =







0.
2.732051

1.
1.





 , ~ξ =







4.732051
12.464102
24.196152
40.928203





 , ~u =







4.732051
−16.165808
13.716878
30.448929





 ,

A2 =







0. −1.732051 0. 0.
20.666667 −1.503206 −10.163460

0.202565 0.666667
7.130768





 ;

Second step (k=2): Now we have m2 = 103.295919 6= 0, S2 = 105.555556, S = −10.274023, K =
7.778160, y = −0.757070, β = 0.064283, a = 3.818322,

~v =







0.
0.

−11.777230
−10.163460





 , ~ξ =







0.
120.999532
−9.161295
−80.324767





 , ~u =







0.
120.999532
35.819733
−41.507243





 ,

A3 =







1. −1.732051 0. 0.
20.666667 10.274023 0.

7.175439 −0.364642
0.157895





 ;

Elements of lower triangle in symmetric matrices A2 and A3 are not given.
Note that obtained tridiagonal matrix differs from this one obtained by Givens

algorithm. Of course, this two matrices are similar, because operation of similarity with
diagonal matrix D = diag(1,−1,−1, 1) exists.

Mention that by Givens and Householher’s method the Hermitian matrices trans-
form to Hermitian tridiagonal matrices. Moreover, general complex matrices transform
to Hessenberg form.

Lesson V - Eigensystems 75

5.7. Eigenvalue problem for symmetric tridiagonal matrices

Let A be real symmetric tridiagonal matrix of order n which non-zero elements will
be denoted as

aii = bi (i = 1, . . . , n),

ai,i−1 = ai−1,i = ci (i = 2, . . . , n).

With pk(λ) denote main minor of order k of matrix A− λI, i.e.

pk(λ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b1 − λ c2

c2 b2 − λ c3 0
.

0 ck−1 bk−1 − λ ck

ck bk − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and define p0(λ) = 1. Note that p1(λ) = b1 − λ.
By developing of determinant pk(λ) up to elements of last row we get

pk(λ) = (bk − λ)pk−1(λ)− c2
kpk−2(λ).

The value of characteristic polynomial of matrix A can be simple evaluated, based on
previous, using three member recurrent relation

(5.7.1)
pk(λ) = (bk − λ)pk−1(λ)− c2

kpk−2(λ) (k = 2, . . . , n),

p0(λ) = 1, p1(λ) = b1 − λ.

A simple method for determination of eigenvalues of symmetric tridiagonal matrices
is based on usage of recurrent relation (5.7.1), method of interval bisection, and statement
of the following theorem, which is simple to prove:

Theorem 5.7.1. (Givens) Let all elements ck 6= 0 of symmetric tridiagonal matrix A of order n. Then
it holds:

(1) Zeros of every polynomial pk (k = 2, . . . , n) are real, different, and divided by zeros of
polynomial pk−1;

(2) If pn(λ) 6= 0, number of eigenvalues of matrix A less than λ is equal to number of sign
change of s(λ) in the series

(5.7.2) p0(λ), p1(λ), . . . , pn(λ).

If some pk(λ) = 0, then on this place in series (5.7.2) can be taken arbitrary sign,
regarding to pk−1(λ)pk+1(λ) < 0.
Remark that in theorem there exists condition ck 6= 0 for every k = 2, . . . , n. If,

for example, for some k = m, cm = 0, then problem simplifies, because it splits in two
problems of lower order (m and n−m). Namely, matrix A becomes

A ==
[

A′ 0
0 A′′

]

,

where A′ and A′′ are tridiagonal symmetric matrices of order m and n−m, respectively,
and in this case is

det(A− λI) = det(A′ − λI) det(A′′ − λI).

Using multiple values for λ it is possible by systematic application of Theorem 5.7.1
to determine disjunct intervals in which lie eigenvalues of matrix A. Thus, if we find
that

s(λ1) = s1 and s(λ2) = s2 = s1 + 1 (λ1 < λ2),

76 Numerical Methods in Computational Engineering

based on Theorem 5.7.1 we have that in interval (λ1, λ2) lies one only eigenvalue of ma-
trix A. Then for its determination the simple method of halving of interval (bisection
method) can be used, by contraction of this starting interval up to desired exactness.

For determination of intervals in which lie eigenvalues it can be used also theorem
of Gershgorin (Section 5.1), so that those intervals are

[b1 − |c2|, b1 + |c2|],
[bi − |ci| − |ci+1|, bi + |ci|+ |ci+1|], (i = 2, . . . , n− 1),

[bn − |cn|, bn + |cn|].

Unfortunately, these intervals are not disjunct, and in general case contain not one only
eigenvalue of matrix A.

Example 5.7.1.

For given matrix

A =







1 1
1 3 2

2 5 3
3 7





 .

we have
p0(λ) = 1, p1(λ) = 1− λ, p2(λ) = (3− λ)p1(λ)− p0(λ),

p3(λ) = (5− λ)p2(λ)− 4p1(λ), p4(λ) = (7− λ)p3(λ)− 9p2(λ).

Let λ = 0. Then we have p0(0) = 1, p1(0) = 1, p2(0) = 2, p3(0) = 6, p4(0) = 24. Thus, in
the series (5.7.2) are + + + + +, what means that there is no sign change, i.e. s(0) = 0.
According to Theorem 5.7.1, matrix A does not have negative eigenvalues, i.e. it is
positive-definitive.

Taking in sequence for λ values 1, 2, 4, 5, 7, 9, 10 we get the results given in table 5.7.1.

Table 5.7.1
λ p0(λ) p1(λ) p2(λ) p3(λ) p4(λ) s(λ)

1 1 0 −1 −4 −15 1
2 1 −1 −2 −2 8 2
4 1 −3 2 14 24 2
5 1 −4 7 16 −31 3
7 1 −6 23 −22 −207 3
9 1 −8 47 −156 −111 3
10 1 −9 62 −274 264 4

Based on values of s(λ) we conclude that in each interval (0, 1), (1, 2), (4, 5), (9, 10) is
located one eigenvalue of matrix A. These eigenvalues with six figures are

λ1 ∼= 0.322548, λ1 ∼= 1.745761, λ1 ∼= 4.536620, λ1 ∼= 9.395071.

Note that these are zeroes of Laguerre polynomial L4.

5.8. LR and QR algorithms

This section is devoted to so known factorization methods. First such method for so-
lution of problem of eigenvalues for arbitrary matrix A was described by H. Rutishauser
([14]) in the year 1958, which called it LR transformation. Method consists in construc-
tion of series of matrices {Ak}k∈N , starting from A1 = A, in the following way: Matrix A
factorizes to lower triangular matrix Lk with unit diagonal and upper triangular matrix
Rk, i.e.

(5.8.1) Ak = LkRk,

Lesson V - Eigensystems 77

and then the following member is determined by multiplication of obtained factors in
opposite sequence, i.e.

(5.8.2) Ak+1 = RkLk.

Note that matrices Ak+1 and Ak are similar, because they are connected with transfor-
mation of similarity

(5.8.2) Ak+1 = L−1
k AkLk.

Factorization of (5.8.1) can be performed by Gauss method of elimination.
If we put

L(k) = L1 . . .Lk and R(k) = Rk . . .R1,

based on (5.8.2) we have
LkAk+1 = AL(k),

wherefrom it follows

L(k)R(k) = L(k−1)AkR(k−1) = AL(k−1)R(k−1).

By iterating the last equality, we get

L(k)R(k) = A2L(k−2)R(k−2) = . . .Ak,

what means that L(k)R(k) is factorization of matrix Ak. Using this facts, Rutishauser (see,
also [7]) showed that under certain conditions series of matrices {Ak} converges towards
some upper triangular matrix, which elements on the main diagonal give eigenvalues
of matrix A. Usually, LR method is applied to matrices previously reduced to upper
Hessenberg form (aij = 0 for i ≥ j + 2). If, by means of some method, general matrix
reduced to lower Hessenberg form we apply LR method to transposed matrix, which has
the same eigenvalues. All matrices in series {Ak} have Hessenberg form. Acceleration
of convergence of series {Ak} can be done by convenient shifting pk, so that, in spite of
Ak we factorize Bk = Ak − pkI = LkRk, whereby Ak+1 = pkI + RkLk.

Unfortunately, LR algorithm has several disadvantages (see monograph of Wilkinson
[7]). For example, factorization does not exist for every matrix. One better factorization
method was developed by J.G.F. Francis ([15]) and V.N. Kublanovskaya ([16]), where
matrix L is replaced with unitary matrix Q. So one gets QL algorithm defined by

(5.8.3) Ak = QkRk, Ak+1 = RkQk (k = 1, 2, . . .),

starting from A1 = A. Note that Ak+1 = Q ∗AkQk.
If we put

(5.8.4) Q(k) = Q1 . . .Qk and R(k) = Rk . . .R1,

similar as LR method, we find

(5.8.5) Q(k)Ak+1 = AQ(k) and Q(k)Rk = Ak.

Theorem 5.8.1. If matrix A regular, then exists decomposition A = QR, where Q is unitary, and
R upper triangular matrix. Moreover, if diagonal elements of matrix R are positive, decomposition is
unique.

QR factorization (5.8.3) can be performed by using unitary matrices of form I−2~w~w∗.
So, in order to transform Ak to Rk, i.e. reduction of columns to Ak, we have

(5.8.6) (I− 2~wn−1 ~w∗n−1) . . . (I− 2~wn−1 ~w∗n−1)Ak = Rk.

78 Numerical Methods in Computational Engineering

The matrix Qk is then

(5.8.7) Qk = (I− 2~w1 ~w∗1) . . . (I− 2~wn−1 ~w∗n−1).

QR algorithm is efficient if initial matrix has (upper) Hessenberg form. Then, previ-
ously mentioned unitary matrices reduce to two-dimensional rotations. All matrices Ak

are of Hessenberg form. Thus, eigenvalue problem for general matrix is most convenient
to be solved in two steps. At first, reduce matrix to Hessenberg form, and then apply
the QR algorithm.

In special case, when initial matrix is tridiagonal, matrices Ak in QR algorithm are
also tridiagonal. In that case, using conveniently chosen shift pk, QR algorithm becomes
very efficient for solving eigenvalue problem of tridiagonal matrices.

By introducing of shift pk, the formulae (5.8.3) become

(5.8.8) Ak − pkI = QkRk, Ak+1 = pkI + RkQk (k = 1, 2, . . .).

Suppose that A(= A1) is symmetric tridiagonal real matrix. All others matrices
Ak = [a(k)

ij]n×n are the same. In order to simplify, introduce notation from section 5.7.,
i.e.

a(k)
ii = b(k)

i (i = 1, . . . , n),

a(k)
i,i−1 = a(k)

i−1,i = c(k)
i (i = 2, . . . , n),

and suppose c(1)
i 6= 0 (i = 2, . . . , n). Then matrix A1 has all different eigenvalues.

There are two ways for choosing of shift pk. The first one is to take for pk value of
matrix element located in lower right corner of matrix Ak, i.e. pk = b(k)

n . The second way
of pk selection is that for pk is taken such eigenvalue of matrix of type 2× 2

(5.8.9)

[

b(k)
n−1 c(k)

n

c(k)
n b(k)

n

]

which is closer to the value b(k)
n . Such choice

(5.8.10) pk = b(k)
n + d− sgn(d)

√

d2 + (c(k)
n)2, d =

1
2
(b(k)

n−1 − b(k)
n)

emanates from Wilkinson and gives faster convergence of QR algorithm in comparison
to choice pk = b(k)

n . In both cases we have convergence such that

c(k)
n c(k)

n−1 → 0 (k →∞).

If c(k)
n becomes neglectful small (i.e. machine zero), we can take b(k)

n as one eigenvalue
of matrix A and put last row and column in Ak away, so that procedure is to be
continued with problem of dimension n − 1. Nevertheless, if c(k)

n−1 is neglectfully small
and c(k)

n significant, we can at once determine two eigenvalues of matrix Ak, and those
are actually eigenvalues of matrix (5.8.9). The process is to be continued by dropping
last two rows and columns and applying algorithm (5.8.8) on the problem of dimension
n− 2. In this way, QR algorithm becomes very efficient because it produces deflation of
matrix order.

In practical application of QR algorithm, decomposition (5.8.3) or (5.8.8) is not nec-
essary explicitly to calculate. Namely, it is possible directly to obtain (5.8.5), i.e.

Ak+1 = Q(k)T
AQ(k),

where now Q(k) is orthogonal matrix given by (5.8.4). Note that matrix Qk converges to
orthogonal matrix of eigenvectors of matrix A (compare with the case of Jacobi method,
section 5.5.).

Lesson V - Eigensystems 79

As already given, unitary (orthogonal) matrices which appear in (5.8.6) and (5.8.7)
reduce to two-dimensional rotations.

Let Zp = Z(k)
p = (I − 2~wp ~wT

p), ~wp = [wp1 . . . ~wpn]T , where for coordinates of vector ~wp we
took

wpp = sin
θ
2
, wp,p+1 = cos

θ
2
, wpi = 0 (i 6= p, p + 1).

Based on (5.4.8) we have

Zp =



























1
. . . 0

1
c s
s −c

1

0 . . .
1



























← p
← p + 1

↑ ↑
p p + 1

where c = cos θ and s = sin θ.
In order to simplify, in matrix Ak omit iteration index, i.e. take that b(k)

i = bi and
c(k)
i = ci. Chose now the angle θ = θ(k)

1 = θ1, so that elements in first column under main
diagonal in matrix Z1Ak are equal to zero. Than we have cot θ1 = b1/c2 , i.e.

c =
b1

√

b2
1 + c2

2

and s =
c2

√

b2
1 + c2

2

.

In matrix

Z1AkZ1 =





















b′1 c′2 d1 0 · · · 0 0
c′2 b′2 c′3 0 0 0
d1 c′3 b3 c4 0 0
0 0 c4 b4 0 0
... 0 0
0 0 0 0 bn−1 cn

0 0 0 0 cn bn





















elements denoted with prime are these ones elements of matrix Ak which change during
transformation. Matrix Ak+1 is obtained by

Ak+1 = Zn−1 · · ·Z2Z1AkZ1Z2 · · ·Zn−1,

where Z2 · · ·Zn−1 are constructed in similar way as Z1, so that matrix Ak+1 becomes
tridiagonal. The product of all orthogonal (two-dimensional) rotations

Z =
∞
∏

k=1

(Z(k)
1 Z(k)

2 . . .Z(k)
n−1)

gives a matrix of eigenvectors. Namely, here we have

k
∏

j=1

(Z(j)
1 Z(j)

2 . . .Z(j)
n−1) = Q(k).

Now we can formulate recursively QR algorithm for determining one eigenvalue λ and
corresponding orthonormed vector ~x = Z~e1 (~xT ~x = 1, ~e1 = [1 0 · · · 0]T) of real symmetric
tridiagonal matrix.

80 Numerical Methods in Computational Engineering

Let λ(k) and ~y (k)=[y(k)
1 y(k)

2 ...y(k)
n]T be approximations of eigenvalue λ and eigenvector ~x in

k-th iterative step (k = 1, 2, . . .).
Starting from ~y (1) = ~e1, i.e. y(1)

1 = 1, y(1)
i = 0 (i = 2, . . . , n), k-th iterative step can be

expressed in the following way ([17]):
For p = 1, 2, . . . , n− 1 we determinate

α := [(c̄ (k)
p)2 + (d (k)

p)2]1/2, c := c̄ (k)
p /α, s := d (k)

p /α,

b(k+1)
p := c2b̄(k)

p + 2 c sc̃(k)
p+1 + s2b(k)

p+1,

b̄(k)
p+1 := s2b̄(k)

p − 2 c sc̃(k)
p+1 + c2b(k)

p+1,

c(k+1)
p := cc̄(k)

p + s d(k)
p = α,

c(k)
p := (b̄(k)

p − b(k)
p+1)cs + c̃(k)

p+1(s
2 − c2),

c̃(k)
p+2 := −c c(k)

p+2, d(k)
p+1 := s c(k)

p+2,

y(k+1)
p := cȳ(k)

p + sy(k)
p+1, ȳ(k)

p+1 := s ȳ(k)
p − c y(k)

p+1,

using
d(k)
1 := c(k)

2 , c̄(k)
1 := b(k)

1 − λ(k),

b̄(k)
1 := b̄(k)

1 , c̃(k)
2 := c(k)

2 , ȳ(k)
1 := y(k)

1 ,

and λk = pk, where pk is eigenvalue of matrix (5.8.9) determined by (5.8.10).
The iterative process interrupts when, for example, c(k)

n becomes small enough. As
told previously, in this case we take that λ := b(k)

n and ~x := ~y(k), eliminate last row and
last column in matrix Ak+1, and then repeat complete iterative process over this matrix
of order n− 1. Then we determine second eigenvalue and corresponding eigenvector (see
method of deflation, Section 5.4), and so on. We act in the same way if c(k)

n−1 is neglectful,
and c(k)

n significant. In this case we determine two eigenvalues simultaneously.
Remark that series b̄(k)

p , c̄(k)
p , c̃(k)

p , ȳ(k)
p do not demand additional space in memory.

Namely, they can be stored in the same locations for series b(k)
p , c(k)

p , y(k)
p .

Similar to QR algorithm, it is developed QL algorithm ([18]), where L is lower
triangular matrix, and Q unitary matrix. Also, it has been developed so known implicit
QL algorithm ([19]).

5.9. Software eigenpackages

Some general guidelines for solving eigenproblems are summarized below [23].
• When only the largest and (or) the smallest eigenvalue of a matrix is required, the

power method can be employed.
• Although it is rather inefficient, the power method can be used to solve for inter-

mediate eigenvalues.
• The direct method is not a good method for solving linear eigenproblems. However,

it can be used for solving nonlinear eigenproblems.
• For serious eigenproblems, the QR method is recommended.
• Eigenvectors corresponding to a known eigenvalue can be determined by one appli-

cation of the shifted inverse power method.
Almost all software routines in use nowadays trace their ancestry back to routines

published in Wilkinson and Reinsch’s boock Handbook for Automatic Computation, Vol.
II, Linear Algebra [2]. A public-domain implementation of the Handbook routines in
FORTRAN is the EISPACK set of programs [3]. The routines presented in majority of most
frequently used software packages are translations of either the Handbook or EISPACK
routines, so understanding these will take a lot of the way towards understanding those
canonical packages.

Lesson V - Eigensystems 81

IMSL [4] and NAG [5] each provide proprietary implementations in FORTRAN of what
are essentially the Handbook routines.

Many commercial software packages contain eigenproblem solvers. Some of the
more prominent packages are Matlab and Mathcad. More sophisticated packages, such as
Mathematica, Macsyma, and Maple also contain eigenproblem solvers. The book Numerical
Recepies [2] contains subroutines and advice for solving eigenproblems.

A good ”eigenpackage” will provide separate routines, or separate paths through
sequences of routines, for the following desired calculations
• all eigenvalues and no eigenvectors
• all eigenvalues and some corresponding eigenvectors
• all eigenvalues and all corresponding eigenvectors.

The purpose of these distinctions is to save compute time and storage; it is wasteful
to calculate eigenvectors that you don’t need. Often one is interested only in the eigen-
vectors corresponding to the largest few eigenvalues, or largest few in the magnitude,
or few that are negative. The method usually used to calculate ”some” eigenvectors is
typically more efficient than calculating all eigenvectors if you desire fewer than about
a quarter of the eigenvectors.

A good eigenpackage also provides separate paths for each of the above calculations
for each of the following special forms of the matrix:
• real, symmetric, tridiagonal
• real, symmetric, banded (only a small number of sub- and super-diagonals are

nonzero)
• real, symmetric
• real, nonsymmetric
• complex, Hermitian
• complex, non-Hermitian

Again, the purpose of these distinctions is to save time and storage by using the
least general routine that will serve in any particular application.

Good routines for the following paths are available:
• all eigenvalues and eigenvectors of a real, symmetric, tridiagonal matrix
• all eigenvalues and eigenvectors of a real, symmetric, matrix
• all eigenvalues and eigenvectors of a complex, Hermitian matrix
• all eigenvalues and no eigenvectors of a real, nonsymmetric matrix.

5.10. Generalized and Nonlinear Eigenvalue Problems

Many eigenpackages also deal with the so-called generalized eigenproblem [6],

(5.10.1) A · ~x = λB · ~x

where A and B are both matrices. Most such problems, where B is nonsingular, can be
handled by the equivalent

(5.10.2) (B−1 ·A) · ~x = λ~x

Often A and B are symmetric and B is positive definite. The matrix B−1 · A in
(5.10.2) is not symmetric, but we can recover a symmetric eigenvalue problem by using
the Cholesky decomposition B = L · LT . Multiplying equation (5.10.1) by L−1 we get

(5.10.3) C · (LT · ~x) = λ(LT · ~x)

where

(5.10.4) C = L−1 ·A(L−1)T

82 Numerical Methods in Computational Engineering

The matrix C is symmetric and its eigenvalues are the same as those of the original
problem (5.10.1); its eigenfunctions are LT ·~x. The efficient way to form C is first to solve
the equation

(5.10.5) Y · LT = A

for the lower triangle of the matrix Y. Then solve

(5.10.6) L ·C = Y

for the lower triangle of the symmetric matrix C.
Another generalization of the standard eigenvalue problem is to problems nonlinear

in the eigenvalue λ, for example,

(5.10.7) (Aλ2 + Bλ + C) · ~x = 0

This can be turned into a linear problem by introducing an additional unknown
eigenvector y and solving the 2N × 2N eigensystem,

[

0 I
−A−1 ·C −A−1 ·B

] [

~x
~y

]

= λ
[

~x
~y

]

.

This technique generalizes to higher-order polynomials in λ. A polynomial of degree
M produces a linear MN ×MN eigensystem, as given in [7].

Bibliography (Cited references and further reading)

[1] Milovanović , G.V., Numerical Analysis I, Naučna knjiga, Beograd, 1988 (Serbian).
[2] Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical Re-

cepies - The Art of Scientific Computing. Cambridge University Press, 1989.
[3] Smith, B.T., et al., Matrix Eigensystem Routines - EISPACK Guide , 2nd ed., vol

6 of Lecture Notes in Computer Science,, Springer, New York, 1976.
[4] IMSL Math/Library Users Manual , IMSL Inc., 2500 City West Boulevard, Houston

TX 77042
[5] NAG Fortran Library, Numerical Algorithms Group, 256 Banbury Road, Oxford

OX27DE, U.K., Chapter F02.
[6] Golub, G.H., and Van Loan, C.F., Matrix Computation, Johns Hopkins University

Press, Baltimore 1989.
[7] Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, New York,

1965.
[8] Acton, F.S., Numerical Methods that Work, corrected edition, Mathematical Asso-

ciation of America, Chapter 13, Washington, 1970.
[9] Horn, R.A., and Johnson, C.R., Matrix Analysis, Cambridge University Press, Cam-

bridge, 1985.
[10] Milovanović, G.V. and Djordjević, Dj.R., Programiranje numeričkih metoda na

FORTRAN jeziku. Institut za dokumentaciju zaštite na radu ”Edvard Kardelj”,
Nǐs, 1981 (Serbian).

[11] Parlett, B.N. and Poole, W.G., A geometric theory for the QR, LU, and power
iterations. SIAM J. Numer. Anal. 10(1973), 389-412.

[12] Bart, W., Martin, R.S., Wilkonson,J.H. Calculation of the eigenvalues of a symmet-
ric tridiagonal matrix by the bisection method. Numer Math. 9(1967), 386-393.

[13] Wilkinson, J.H. & Reisch, C., Handbook for Automatic Computation. Vol. II Linear
Algebra. Springer Verlag, Berlin-Heidelberg-New York, 1971.

Lesson V - Eigensystems 83

[14] Rutishauser, H., Solution of eigenvalue problem with the LR-transformation. Appl.
Math. Ser. Nat. Bur. Stand. 49(1958), 47-81.

[15] Francis, J.G.F., The QR transformation - a unitary analogue to the LR transforma-
tion. Comput.J. 4(1961/62), 265-271, 332-345.

[16] Kublanovskaya, V.N., O nekotoryh algorifmah dlja rešenija polnoǐ problemy sob-
stvennyh značenǐi. Ž. Vyčisl. Mat. i Mat. Fiz. 1(1961), 555-570.

[17] Golub, G.H. & Welsch, J.H., Calculation of Gauss quadrature rules. Math. Comp.
23(1969), 221-230.

[18] Bowdler, H., Martin, R.S., Reinsch, C. Wilkinson, J.H., The QR and QL algorithms
for symmetric matrices. Numer. Math. 11(1968), 293-306.

[19] Dubrulle, A., Martin, R.S., Wilkinson, J.H., The implicit QR algorithm. Numer.
Math. 12(1968), 377-383.

[20] Stoer, J., and Bulirsch, R., Introduction to Numerical Analysis, Springer, New York,
1980.

[21] Mitrinović, D.S. and Djoković, D.Ž., Polinomi i matrice. ICS, Beograd, 1975.
[22] Wilkinson, J.H., and Reinsch, C., Linear Algebra, vol. II of Handbook for Automatic

Computation, Springer, New York, 1971.
[23] Hoffman, J.D., Numerical Methods for Engineers and Scientists. Taylor & Francis,

Boca Raton-London-New York-Singapore, 2001.

