
Faculty of Civil Engineering Faculty of Civil Engineering and Architecture
Belgrade Nǐs
Master Study Doctoral Study
COMPUTATIONAL ENGINEERING

LECTURES

LESSON VII

7. Finite Difference Calculus.
Interpolation of Functions

7.0. Introduction

This lesson is devoted to one of the most important areas of theory of approxima-
tion - interpolation of functions. In addition to theoretical importance in construction
of numerical methods for solving a lot of problems like numerical differentiation, numer-
ical integration and similar, it has practical application to many engineering problems,
including FEM problems.

Theory of approximation deals with replacing of function f defined on some set X
by another function Φ. Let function Φ depend on n + 1 parameter a0, a1, . . . , an, i.e.

Φ(x) = Φ(x; a0, a1, . . . , an).

Problem of approximation of function f by function Φ reduces to determination of
parameters ai, i = 1, . . . , n according to some criterion. Depending on chosen criterion, we
differ several sorts of approximations. Generally, depending on form of approximation
function, they can be divided to linear and nonlinear approximation functions. The
general form of linear approximation function is

(7.0.1) Φ(x) = a0Φ0(x) + a1Φ1(x) + . . . + anΦn(x),

whereby system of functions {Φk} fulfills some given conditions. Linearity of function Φ
means linearity regarding parameters ai (i = 0, 1, . . . , n). When Φk = xk (k = 0, 1, . . . , n), i.e.

Φ(x) = a0 + a1x + . . . + anxn,

we have approximation by algebraic polynomials. In the case when {Φk} = {1, cos x,
sinx, cos 2x, sin 2x, . . .} we have approximation by trigonometric polynomials, i.e. trigono-
metric approximation. For the case

Φ(k) = (x− xk)m
+ =

{

(x− xk)m (x ≥ xk),
0 (x < xk),

where m is fixed natural number, we have spline approximation.
We will mention two of nonlinear approximations:

1. Exponential approximation

Φ(x) = Φ(x; c0, b0, . . . , cr, br) = c0eb0x + . . . + crebrx,

where n + 1 = 2(r + 1), i.e. n = 2r + 1.

111

112 Numerical Methods in Computational Engineering

2. Rational approximation

Φ(x) = Φ(x; b0, . . . , br, c0, . . . , cs) =
b0 + b1x + . . . + brxr

c0 + c1x + . . . + csxs ,

where n = r + s + 1.
Let function f be given on segment [a, b] by set of pairs (xk, fk) (k = 0, 1, . . . , n), where

fk = f(xk). If for approximation of function f by function Φ the criterion for choice of
parameters a0, a1, . . . , an is given by system of equations

(7.0.2) Φ(xk; a0, a1, . . . , an) = fk (k = 0, 1, . . . , n),

we have problem of function interpolation. Function Φ is called in this case interpolation
function and points xk (k = 0, 1, . . . , n) interpolation nodes.

Problem of interpolation could be more complicated then noted. More general case
appears when, in addition to function values in interpolation nodes, the derivatives of
function are also included.

7.1. Chebyshev systems

Let function f be given by its values fk ≡ f(xk) in points xk (xk ∈ [a, b])(k = 0, 1, . . . , n).
If we have linear interpolation problem, i.e. interpolation by function (7.0.1), system of
equation (7.0.2) reduces to system of linear equations in parameters ai (i = 0, 1, . . . , n),

a0Φ0(xk) + a1Φ1(xk) + . . . + anΦn(xk) = fk (k = 0, 1, . . . , n),

i.e.

(7.1.1)









Φ0(x0) Φ1(x0) . . . Φn(x0)
Φ0(x1) Φ1(x1) . . . Φn(x1)

...
Φ0(xn) Φ1(xn) . . . Φn(xn)









·









a0

a1
...

an









=









f0

f1
...

fn









.

In order above given interpolation problem to have unique solution it is necessary that
matrix of system (7.1.1) be regular.

To the system of functions (Φk) should be intruded such conditions under which
there not exists linear combination

a0Φ0(x) + a1Φ1(x) + . . . + anΦn(x)

which has n + 1 different zeros on [a, b]. System of functions with such characteristic
are called Chebyshev (Tchebyshev) systems, or T-systems. There exists extraordinary
monograph regarding T-systems [6].

Theorem 7.1.1. If the functions Φk : [a, b] → R (k = 0, 1, . . . , n) are n + 1 times differentiable and if
for every k = 0, 1, . . . , n the Wronsky determinant Wk is different from zero, i.e.

Wk =

∣

∣

∣

∣

∣

∣

∣

∣

Φ0(x) Φ1(x) . . . Φk(x)
Φ′0(x) Φ′1(x) . . . Φ′n(x)

...
Φ(k)

0 (x) Φ(k)
1 (x) . . . Φ(k)

n (x)

∣

∣

∣

∣

∣

∣

∣

∣

6= 0,

system of functions {Φk} is Chebyshev (T) system.

Lesson VII - Finite Difference Calculus. Interpolation of Functions. 113

7.2. Lagrange interpolation

Let function f be given by its values fk ≡ f(xk) in points xk (xk ∈ [a, b])(k = 0, 1, . . . , n).
Without decreasing the generality, assume

(7.2.1) a ≤ x0 < x1 < . . . < xn ≤ b.

If we take points xk for interpolation knots and put Φk(x) = xk (k = 0, 1, . . . , n) we have a
problem of interpolation of function f by algebraic polynomial. Denote this polynomial
with Pn, i.e.

Pn(x) = Φ(x) = a0 + a1x + . . . + anxn.

Then we have the interpolating polynomial

(7.2.2) Pn(x) =
n

∑

k=0

f(xk)Lk(x),

where
Lk(x) =

(x− x0) . . . (x− xk−1)(x− xk+1) . . . (x− xn)
(xk − x0) . . . (xk − xk−1)(xk − xk+1) . . . (xk − xn)

=
ω(x)

(x− xk)ω′(xk)
,

ω(x) = (x− x0)(x− x1) . . . (x− xn),

ω′(x) = (xk − x0) . . . (xk − xk−1)(xk − xk+1) . . . (xk − xn).

The formula (7.2.2) is called Lagrange interpolation formula, and polynomial Pn Lagrange
interpolation polynomial. When programming, it is suggested to use the following form
of Lagrange formula.

Pn(x) =
n

∑

k=0





f(xk)
n

∏

i=0
i 6=k

x− xi

xk − xi





 .

Having in mind that determinant of system (7.1.1) is Vandermonde determinant, i.e.

∣

∣

∣

∣

∣

∣

∣

∣

1 x0 . . . xn
0

1 x1 . . . xn
1

...
1 xn . . . xn

n

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

i>j

(xi − xj),

and the assumption (7.2.1), it follows that the Lagrange polynomial (7.2.2) is unique.

Example 7.2.1. For function values given in tabular form find the Lagrange interpolation polynomial.

xk f(xk)

−1 −1.
0 2.
2 10.
3 35.

P3(x) = (−1)
(x− 0)(x− 2)(x− 3)

(−1− 0)(−1− 2)(−1− 3)
+ 2

(x + 1)(x− 2)(x− 3)
(0 + 1)(0− 2)(0− 3)

+ 10
(x + 1)(x− 0)(x− 3)
(2 + 1)(2− 0)(2− 3)

+ 35
(x + 1)(x− 0)(x− 2)
(3 + 1)(3− 0)(3− 2)

,

i.e.
P3(x) =

5
3
x3 − 4

3
x2 + 2.

114 Numerical Methods in Computational Engineering

When the general expression for interpolation polynomial is not needed, but only
value for some distinct x, the Aitken’s scheme is to be used.

Aitken’s scheme is of form:

Ak = f(xk) (k = 0, 1, . . . , n),

Ak−1,k =
1

xk − xk−1

∣

∣

∣

∣

∣

Ak−1 xk−1 − x
Ak xk − x

∣

∣

∣

∣

∣

(k = 1, . . . , n),

A0,1,...,n =
1

xn − x0

∣

∣

∣

∣

∣

A0,1,...,n−1 x0 − x
A1,2,...,n xn − x

∣

∣

∣

∣

∣

,

where Pn(x) = A0,1,...,n.

Example 7.2.2. Determine approximately f(1) using data from the following table (see [1], pp. 20-21)

x 14 17 31 35
f(x) 68.7 64.0 44.0 39.1

by Aitken’s scheme.
Following above given procedure, one gets

A0,1 =
1

17− 14

∣

∣

∣

∣

∣

68.7 14− 27
64.0 17− 27

∣

∣

∣

∣

∣

= 48.33,

A1,2 =
1

31− 17

∣

∣

∣

∣

∣

64.0 17− 27
44.0 31− 27

∣

∣

∣

∣

∣

= 49.72,

A2,3 =
1

35− 31

∣

∣

∣

∣

∣

44.0 31− 27
39.1 35− 27

∣

∣

∣

∣

∣

= 48.90,

A0,1,2 =
1

31− 14

∣

∣

∣

∣

∣

48.33 14− 27
49.72 31− 27

∣

∣

∣

∣

∣

= 49.39,

A1,2,3 =
1

35− 17

∣

∣

∣

∣

∣

49.72 17− 27
48.90 35− 37

∣

∣

∣

∣

∣

= 49.26,

and, finally,

f(27) ∼= P3(27) = A0,1,2,3 =
1

35− 14

∣

∣

∣

∣

∣

49.39 14− 27
49.26 35− 27

∣

∣

∣

∣

∣

= 49.31

There is often problem to determine value of argument for given function value. This
problem is usually to be solved using methods of inverse interpolation. If the given
function is monotone, the simplest way to apply inverse interpolation is to switch values
of function and argument, and then to construct interpolation polynomial. Note that
for inverse interpolation it is convenient to use Aitken’s interpolation method.

Example 7.2.3. Determine approximately zero of function given in example 7.2.1.

Lagrange interpolation polynomial for function y → f−1(y) is

P3(y) = (−1)
(y − 2)(y − 10)(y − 35)

(−1− 2)(−1− 10)(−1− 35)
+ 0

(y + 1)(y − 10)(y − 35)
(2 + 1)(2− 10)(2− 35)

+ 2
(y + 1)(y − 2)(y − 35)

(10 + 1)(10− 2)(10− 35)
+ 3

(y + 1)(y − 2)(y − 10)
(35 + 1)(35− 2)(35− 10)

,

wherefrom, for y = 0 we get null of function f

x ∼= P3(0) = −0.6508

Lesson VII - Finite Difference Calculus. Interpolation of Functions. 115

7.3. Newton interpolation with divided differences

For function f given by its values fk ≡ f(xk) in points xk (k = 0, 1, . . . , n), define first
divided differences. The ratio

f(x1)− f(x0)
x1 − x0

is called divided difference of first order (of function f in points x0 and x1) and denoted
as [x0, x1; f].

Divided difference of order r are defined recursively by

(7.3.1) [x0, x1, . . . , xr; f] =
[x1, . . . , xr; f]− [x0, . . . , xr−1; f]

xr − x0
,

where [x; f] ≡ f(x).
Relation (7.3.1) enables construction of table of divided differences

k xk fk ∆fk ∆2fk ∆3fk

0 x0 f0

[x0, x1; f]
1 x1 f1 [x0, x1, x2; f]

[x1, x2; f] [x0, x1, x2, x3; f]
2 x2 f2 [x1, x2, x3; f]

[x2, x3; f]
3 x3 f3

...
...

One can show that divided difference of order r has characteristic of linearity, i.e.

[x0, x1, . . . , xr; c1f + c2g] = c1[x0, . . . , xr; f] + c2[x0, . . . , xr; g],

where c1 and c2 are arbitrary constants. Because of, based on (7.3.1),

[x0, x1; f] =
f(x0)

x0 − x1
+

f(x1)
x1 − x0

,

one can prove by mathematical induction

[x0, x1, . . . , xr; f] =
r

∑

i=0

f(xi)
ω′(xi)

,

where ω(x) = (x− x0)(x− x1) . . . (x− xr).
Let f ∈ Cn[a, b] and the condition (7.2.1) holds. Then, for every r ≤ n, the formula

[x0, x1, . . . , xr; f] =

1
∫

0

t1
∫

0

. . .

tr−1
∫

0

f (r)(x0 +
r

∑

i=1

(x− xi−1)ti)dt1 dt2 . . . dtr

holds. This can be proved by mathematical induction.
Applying theorem on integral mean value, from last expression follows

[x0, x1, . . . , xr; f] = f (r)(ξ)

1
∫

0

t1
∫

0

. . .

tr−1
∫

0

dt1 dt2 . . . dtr

=
1
r!

f (r)(ξ) (a < ξ < b).

116 Numerical Methods in Computational Engineering

Taking xi → x0 (i = 1, . . . , r) in last equality, we get

[x0, x1, . . . , xr; f] → 1
r!

f (r)(x0).

Let us express now value of function f(xr) (r ≤ n) by means of divided differences
[x0, . . . , xi; f] (i = 0, 1, . . . , r).

For r = 1, based on definition (7.3.1), we have

f(x1) = f(x0) + (x1 − x0)[x0, x1; f].

In similar way, for r = 2,

f(x2) = f(x1) + (x2 − x1)[x1, x2; f]

= (f(x0) + (x1 − x0)[x0, x1; f]) + (x2 − x1)[x0, x1; f]

+ (x2 − x0)[x0, x1, x2; f],

i.e.
f(x2) = f(x0) + (x2 − x0)[x0, x1; f] + (x2 − x0)(x2 − x1)[x0, x1, x2; f].

In general case, it holds

f(xr) = f(x0) + (xr − x0)[x0, x1; f] + (xr − x0)(xr − x1)[x0, x1, x2; f]

+ . . . + (xr − x0)(xr − x1) . . . (xr − xr−1)[x0, x1, . . . , xr; f].

Using divided differences for set of data (xk, f(xk)) (k = 0, . . . , n) the interpolation poly-
nomial of the following form can be constructed.

Pn(x) = f(x0) + (x− x0)[x0, x1; f] + (x− x0)(x− x1)[x0, x1, x2; f]

+ . . . + (x− x0)(x− x1) . . . (x− xn−1)[x0, x1, . . . , xn; f].

This polynomial is called Newton’s interpolation polynomial.
Having in mind uniqueness of algebraic interpolation polynomial, we conclude that

Newton’s interpolation polynomial is equivalent to Lagrange polynomial. Note that
construction of Newton’s interpolation polynomial demands previous forming of table
of divided differences, what was not the case with Lagrange polynomial. On the other
hand, involving a new interpolation node in order to reduce interpolation error, is more
convenient with Newton’s polynomial, because do not demand repeating of whole cal-
culation. Namely, at Newton’s interpolation we have

Pn+1(x) = Pn(x) + (x− x0)(x− x1) . . . (x− xn)[x0, x1, . . . , xn+1; f].

If we put xi → x0 in Newton’s interpolation polynomial Pn, based on (7.3.2) it reduces
to Taylor polynomial.

Example 7.3.1. Based on table of values of function x → chx form table of divided differences and
write Newton’s interpolation polynomial.

k 0 1 2 3

xk 0.0 0.2 0.5 1.0
f(xk) 1.0000000 1.0200668 1.1276260 1.5430806

k [xk, xk+1; f] [xk, xk+1, xk+2; f] [xk, xk+1, xk+2, xk+3; f]

0
0.1003338

1 0.5163938
0.3585307 0.0740795

2 0.5904733
0.8309093

3

Lesson VII - Finite Difference Calculus. Interpolation of Functions. 117

Newton’s interpolation polynomial is then

P3(x) = 1. + 0.1003338x + 0.5163938x(x− 0.2) + 0.0740795x(x− 0.2)(x− 0.5).

For example, for x = 0.3, ch 0.3 ∼= P3(0.3) = 1.0451474.

7.4. Finite difference calculus

Operator of finite difference on the function set is defined as

(7.4.1) ∆f(x) = f(x + h)− f(x) (h = const. > 0)

and on the series set
∆yk = yk+1 − yk.

If we want to stress explicitly the step h in definition (7.4.1), then we denote in operator
∆ h, i.e. ∆h.

The iterated operator, or degree of operator ∆ is denoted as

∆kf(x) = ∆k−1f(x + h)−∆k−1f(x) (k ∈ N),

∆0f(x) = f(x).

Based on given definition, by means of mathematical induction, it is easy to prove the
formulas

∆k =
k

∑

i=0

(−1)i
(

k
i

)

f(x + (k − i)h),(7.4.2)

f(x + kh) =
k

∑

i=0

(

k
i

)

∆if(x).(7.4.3)

In addition to operator ∆, there are some additional standard operators, known as
finite difference operators. They enable formal calculus based on rules of algebra and
analysis, being a basis for forming different approximation formulas. This calculus is
called finite difference calculus.

On the set of continuous functions we will define operators:
1. Ef(x) = f(x + h) (shift operator)
2. ∆f(x) = f(x + h)− f(x) (forward difference operator)
3. ∇f(x) = f(x)− f(x− h) (backward difference operator)
4. δf(x) = f(x + h

2)− f(x− h
2) (central difference operator)

5. µf(x) = 1
2 (f(x + h

2)− f(x− h
2)) (averaging operator)

6. l f(x) = f(x) (identity operator)
7. J f(x) =

∫

f(t)dt (integration operator)
8. D f(x) = f ′(x)dt (differentiation operator)

The last one is defined on the set of differentiable functions.
If we denote with L the set of previously defined operators,

L = {E, ∆,∇, δ, µ, l, J,D},

then we have the following properties:
a) Every operator A ∈ L is linear, i.e.

A(λ1f(x) + λ2g(x)) = λ1Af(x) + λ2Ag(x),

for every real λ1 and λ2 and every f and g from domain of definition of operator A.

118 Numerical Methods in Computational Engineering

b) For A,B ∈ L it holds the commutativity A B = B A, i.e.

A(Bf(x)) = B(Af(x)).

c) When operator A ∈ L has its inverse operator A−1, then it holds

AA−1 = A−1A = 1.

If we define sum of operators C = A + B as

Cf(x) = (A + B)f(x) = Af(x) + Bf(x),

then the following rules hold:

A + B = B + A

A(B + C) = AB + AC

(A + B) + C = A + (B + C).

Being Ekf(x) = E(Ek−1f(x)) = f(x+ kh) (k ∈ N)), we can define degree of operator for
arbitrary exponent as

Epf(x) = f(x + ph) (p ∈ R).

Let g(x) = Ef(x) = f(x+h). Then f(x) = g(x−h), i.e. f(x) = E−1g(x), wherefrom follows
that operator E−1 is backward shifting.

In the following part are given formal relations between some operators (see [1], pp.
29-32).
1. Because of

∆f(x) = f(x + h)− f(x) = Ef(x)− lf(x) = (E − 1)f(x),

we have
∆ = E − 1 or E = 1 + ∆.

By applying binomial formula on right-hand side of last equalities, we get

∆k = (E − 1)k =
k

∑

i=0

(−1)i
(

k
i

)

Ek−i, Ek = (1 + ∆)k =
k

∑

i=0

(

k
i

)

∆i,

wherefrom follow formulas (7.4.2) and (7.4.3).
2. From

E1/2f(x) = f(x +
h
2
) and E−1/2f(x) = f(x− h

2
),

the following equalities hold:

δf(x) = E1/2f(x)− E−1/2f(x)

and
µf(x) =

1
2
(E1/2f(x) + E−1/2f(x)),

or
δ = E1/2 − E−1/2 and µ =

1
2
(E1/2 + E−1/2).

3. It holds

JDf(x) = J(f ′(x)) =

x+h
∫

x

f ′(t) dt = f(x + h)− f(x) = ∆f(x),

Lesson VII - Finite Difference Calculus. Interpolation of Functions. 119

i.e. J D = ∆. Based on previous equation, we conclude that it holds

∆D−1 = JDD−1 = J.

4. ∇ = 1− E−1.
5. ∆r = Er∇r = Er/2δr.
6. E1/2 = (1 +

1
4
δ2)1/2 +

1
2
δ, µ = (1 +

1
4
δ2)1/2.

7. For connection between E and D suppose that function f is arbitrary times differ-
entiable, so that we have

Ef(x) = f(x + h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) + . . . ,

i.e.
Ef(x) = l f(x) + hDf(x) +

h2

2!
D2f(x) + . . .

= (1 + hD +
h2

2!
D2 + . . .)f(x)

= ehDf(x),

wherefrom it holds

E = ehD and D =
1
h

log(1 + ∆) =
1
h

(∆− ∆2

2
+

∆3

3
− . . .).

8. From
δf(x) = E1/2f(x)− E−1/2f(x) and E = ehD

we have
δ = E1/2 − E−1/2 = ehD/2 − e−hD/2 = 2sh

hD
2

.

Similarly,
µ =

1
2
(E1/2 + E−1/2) = ch

hD
2

.

9. E = (1−∇)−1 = 1 +∇+∇2 +

10. (1 +
1
4
δ2)1/2 = 1 +

1
8
δ2 − 1

128
δ4 +

11. E1/2 = 1 +
1
2
δ +

1
8
δ2 +

7.5. Newton’s interpolation formulas

By means of finite difference calculus the several interpolation formulas in equidis-
tant nodes can be evaluated. The oldest one is Newton’s interpolation formula.

Let function f be given on [a, b] by pairs of values xk, fk, where fk = f(xk) and xk =
x0 +kh (k = 0, 1, . . . , n). For given set of data the table of finite differences can be formed.
In the following table is used operator ∆.

x0 f0

∆f0

x1 f1 ∆2f0

∆f1 ∆3f0

x2 f2 ∆2f1 ∆4f0

∆f2 ∆3f1

x3 f3 ∆2f2

∆f3

x4 f4
...

...

120 Numerical Methods in Computational Engineering

Let x = x0 + ph (0 ≤ p ≤ n), i.e. p =
x− x0

h
. Because of

Ep = (1 + ∆)p =
n

∑

k=0

(

p
k

)

∆k,

we have
Epf0 =

∞
∑

k=0

(

p
k

)

∆kf0 =
n

∑

k=0

(

p
k

)

∆kf0 + Rn(f ; x),

i.e.

(7.5.1) f(x0 + ph) =
n

∑

k=0

(

p
k

)

∆kf0 + Rn(f ;x).

The residuum Rn, having in mind the uniqueness of interpolation polynomial, is equal
to residuum of Lagrange interpolation formula

Rn(f ;x) =
hn+1

(n + 1)!
p(p− 1) . . . (p− n)f (n+1)(ξ),

where ξ is point in interval (x0, xn).
The polynomial

(7.5.2) Pn(x) =
n

∑

k=0

(

p
k

)

∆kf0 (ph = x− x0)

obtained in a given way, is called first Newton’s interpolation polynomial. This polyno-
mial can be defined recursively as

Pk(x) = Pk−1(x) +
(

p
k

)

∆kf0 (k = 1, . . . , n),

starting with P0(x) = f0. The developed form of polynomial is

Pn(x) = f0 + p∆f0 +
p(p− 1)

2!
∆2f0 + . . . +

p(p− 1) . . . (p− n + 1)
n!

∆nf0,

i.e

Pn(x) = f0 +
∆f0

h
(x− x0) +

∆2f0

2!h2 (x− x0)(x− x1) + . . .

+
∆nf0

n!hn (x− x0)(x− x1) . . . (x− xn−1).

Remark. The reader is encouraged to write a code in Mathematica for program realization of first
Newton’s interpolation formula, using all four previously given forms.

First Newton’s interpolation polynomial is used for interpolation on begin of interval,
i.e. in neighborhood of interval starting point x0. Interpolation of function for x < x0 is
called extrapolation.

Using operator ∇ we can form the table of finite differences in the following form.

...
...

xn−4 fn−4
∇fn−3

xn−3 fn−3 ∇2fn−2

∇fn−2 ∆3fn−1

xn−2 fn−2 ∇2fn−1 ∇4fn

∇fn−1 ∇3fn

xn−1 fn−1 ∇2fn
∇fn

xn fn

Lesson VII - Finite Difference Calculus. Interpolation of Functions. 121

Let x = xn + ph (0 ≤ −p ≤ n), i.e. p = x−xn
h . Being

Ep = (1−∇)−p =
+∞
∑

k=0

(−1)k
(

−p
k

)

∇k,

we get

f(xn + ph) =
+∞
∑

k=0

(−1)k
(

−p
k

)

∇kfn

=
+∞
∑

k=0

p(p + 1) . . . (p + k − 1)
k!

∇kfn.

For f(xn + ph) is often used denotation fn+p.
Using differences up to order n, based on previous equality, we get second Newton’s

interpolation formula

Pn(x) = fn + p∇fn +
p(p + 1)

2!
∇2fn + . . . +

p(p + 1) . . . (p + n− 1)
n!

∇nfn,

i.e

Pn(x) = fn +
∇fn

h
(x− xn) +

∇2fn

2!h2 (x− xn)(x− xn−1) + . . .

+
∇nfn

n!hn (x− xn)(x− xn−1) . . . (x− x1).

where the residuum is of the form

Rn(f ;x) =
hn+1

(n + 1)!
p(p + 1) . . . (p + n)f (n+1)(ξ) (ξ ∈ [x0, xn]).

Example 7.5.1. Based on table of values of function x → f(x) form table of divided differences and
write first and second Newton’s interpolation polynomials.

xk −1 0 1 2
f(xk) −3 −5 1 21

Using operator ∆ we form the following table of forward differences.

xk fk ∆fk ∆2fk ∆3fk

−1 −3
−2

0 −5 8
6 6

1 1 14
20

2 21

Using forward differences ∆f0, ∆2f0, ∆3f0 (underlined values in table) we develop the first
Newton’s polynomial

P3(x) = f0 +
∆f0

h
(x− x0) +

∆2f0

2!h2 (x− x0)(x− x1)

+
∆3f0

3!h2 (x− x0)(x− x1)(x− x2)

= −3 + (−2)(x + 1) +
8
2
(x + 1)(x− 0) +

6
3!

(x + 1)(x− 0)(x− 1)

= x3 + 4x2 + x− 5.

Having in mind relation between operators ∆ and ∇,

∇fk = fk − fk−1 = ∆fk−1, ∇2fk = ∆2E−2fk = ∆2fk−2, ∇3fk = ∆3fk−3,

122 Numerical Methods in Computational Engineering

we can use already formed table of forward differences, and by indices shifting form
table of backward differences, i.e. use in table overlined values as ∇fn,∇2fn,∇3fn. Then
we get second Newton’s interpolation polynomial.

P3(x) = 21 + 20(x− 2) +
14
2

(x− 2)(x− 1) +
6
3!

(x− 2)(x− 1)(x− 0).

For bigger tables of final differences, usually by applying finite element method, it is
very important propagation of accidental error of function value in some interpolation
nodes. Let us have the value fk + ε in spite of fk, where ε is error. Then we have the
following table obtained using operator ∆.

xi fi ∆fi ∆2fi ∆3fi ∆4fi

xk−4 fk−4

∆fk−4
xk−3 fk−3 ∆2fk−4

∆fk−3 ∆3fk−4

xk−2 fk−2 ∆2fk−3 ∆4fk−4 + ε
∆fk−2 ∆3fk−3 + ε

xk−1 fk−1 ∆2fk−2 + ε ∆4fk−3 − 4ε
∆fk−1 + ε ∆3fk−2 − 3ε

xk fk + ε ∆2fk−1 − 2ε ∆4fk−2 + 6ε
∆fk − ε ∆3fk−1 + 3ε

xk+1 fk+1 ∆2fk + ε ∆4fk−1 − 4ε
∆fk+1 ∆3fk − ε

xk+2 fk+2 ∆2fk+1 ∆4fk + ε
∆fk+2 ∆3fk+1

xk+3 fk+3 ∆2fk+2

∆fk+3

xk+4 fk+4

The erroneous differences in table are underlined. We see the progressive propagation
of error, so that error in difference ∆mfk−m+i (i = 0, 1, . . . ,m) is

(

m
i

)

(−1)iε.

7.6. Interpolation formulas with central differences

From numerical point of view, Newton’s interpolation polynomials are not conve-
nient, so that the interpolation polynomial with central differences are usually applied.
This polynomials contain the Newton’s polynomials as particular cases.

If function f is given in tabular form in the set of points

Gm = {x0 −mh, . . . , x0 − 2h, x0 − h, x0, x0 + h, x0 + 2h, . . . , x0 + mh},

where m is fixed natural number and h = const > 0. Let fk be function value in point
xk = x0 + kh (k = 0,±1, . . . ,±m). The table containing all possible differences of function
f on set Gm is called central difference table. In set G3 we can form central difference
table of forward differences,

x−3 f−3

∆f−3
x−2 f−2 ∆2f−3

∆f−2 ∆3f−3

x−1 f−1 ∆2f−2 ∆4f−3

∆f−1 ∆3f−2 ∆5f−3
x0 f0 ∆2f−1 ∆4f−2 ∆6f−3

∆f0 ∆3f−1 ∆5f−2

x1 f1 ∆2f0 ∆4f−1

∆f1 ∆3f0

x2 f2 ∆2f1

∆f2

x3 f3

Lesson VII - Finite Difference Calculus. Interpolation of Functions. 123

and following central difference table of central differences.

x−3 f−3
δf−5/2

x−2 f−2 δ2f−2
δf−3/2 δ3f−3/2

x−1 f−1 δ2f−1 δ4f−1

δf−1/2 δ3f−1/2 δ5f−1/2
x0 f0 δ2f0 δ4f0 δ6f0

δf1/2 δ3f1/2 δ5f1/2
x1 f1 δ2f1 δ4f1

δf3/2 δ3f3/2
x2 f2 δ2f2

δf5/2
x3 f3

In previous example we shifted table of forward difference to table of backward difference
in order to save forming one more table. From the equalities

∆rfk = ∇rErfk = ∇rfk+r, ∆rfk = δrEr/2fk = δrfk+r/2 (r = 1, 2, . . .),

we see that from forward difference table it is easy to get backward difference table, or
central difference table by index shifting.

By involving x = x0 + ph and fp = f(x) we can write the first Newton’s interpolation
formula using forward difference operator

(7.6.1) fp = f0 +
(

p
1

)

∆f0 +
(

p
2

)

∆2f0 +
(

p
3

)

∆3f0 + . . . ,

and
fp = f0 +

(

p
1

)

δf1/2 +
(

p
2

)

δ2f1 +
(

p
3

)

δ3f3/2 + . . . ,

using central difference operator.
We see the general member in formula (7.6.1). By multiplying the expressions

(

p
q

)

=
(

p + 1
q + 1

)

−
(

p
q + 1

)

and ∆qfk+1 −∆qfk = ∆q+1fk,

we get
(

p
q

)

∆qfk+1 −
(

p
q

)

∆qfk =
(

p + 1
q + 1

)

∆q+1fk −
(

p
q + 1

)

∆q+1fk,

i.e.

(7.6.2).
(

p
q

)

∆qfk+1 +
(

p
q + 1

)

∆q+1fk =
(

p
q

)

∆qfk +
(

p + 1
q + 1

)

∆q+1fk

Diagram that can graphically explain the previous equality is the following one.

∆qfk

(

p + 1
q + 1

)

↗ ↘
(

p
q

)

∆q+1fk

↘ ↗

∆qfk+1

(

p
q + 1

)

which is called rhomboid diagram. The idea of this graphic representation is that by
moving from left to right of diagram, regardless of which path is used (lover or upper)

124 Numerical Methods in Computational Engineering

the result of collecting expression is the same one. By going up (down) we multiply the
difference by binomial coefficient located under (above) the chosen path. For example,
to the path

∆qfk

(

p + 1
q + 1

)

↗ ↘
(

p
q

)

∆q+1fk

corresponds the expression
(

p
q

)

∆qfk +
(

p + 1
q + 1

)

∆q+1fk. Using the described rhomboids, it

is possible to form rhomboidal network, given on the figure 7.6.1.

↘ ↗ ↘ ↗ ↘ ↗
f−3

(p+3
1

)

∆2f−4
(p+4

3

)

∆4f−5
(p+5

5

)

↗ ↘ ↗ ↘ ↗ ↘
1 ∆f−3

(p+3
2

)

∆3f−4
(p+4

4

)

∆5f−5

↘ ↗ ↘ ↗ ↘ ↗
f−2

(p+2
1

)

∆2f−3
(p+3

3

)

∆4f−4
(p+4

5

)

↗ ↘ ↗ ↘ ↗ ↘
1 ∆f−2

(p+2
2

)

∆3f−3
(p+3

4

)

∆5f−4

↘ ↗ ↘ ↗ ↘ ↗
f−1

(p+1
1

)

∆2f−2
(p+2

3

)

∆4f−3
(p+3

5

)

↗ ↘ ↗ ↘ ↗ ↘
1 ∆f−1

(p+1
2

)

∆3f−2
(p+2

4

)

∆5f−3

↘ ↗ ↘ ↗ ↘ ↗
f0

(p
1

)

∆2f−1
(p+1

3

)

∆4f−2
(p+2

5

)

↗ ↘ ↗ ↘ ↗ ↘
1 ∆f0

(p
2

)

∆3f−1
(p+1

4

)

∆5f−2

↘ ↗ ↘ ↗ ↘ ↗
f1

(p−1
1

)

∆2f0
(p
3

)

∆4f−1
(p+1

5

)

↗ ↘ ↗ ↘ ↗ ↘
1 ∆f1

(p−1
2

)

∆3f0
(p
4

)

∆5f−1

↘ ↗ ↘ ↗ ↘ ↗
f2

(p−2
1

)

∆2f1
(p−1

3

)

∆4f0
(p
5

)

↗ ↘ ↗ ↘ ↗ ↘
1 ∆f2

(p−2
2

)

∆3f1
(p−1

4

)

∆5f0

↘ ↗ ↘ ↗ ↘ ↗
f3

(p−3
1

)

∆2f2
(p−2

3

)

∆4f1
(p−1

5

)

↗ ↘ ↗ ↘ ↗ ↘

Fig. 7.6.1
Beside ascending and descending traces, the horizontal traces can be formed like

1, ∆f0,
(

p
2

)

, ∆3f−1, . . .

When moving this way through table, the member to be taken to sum is equal to
product of member on trace and arithmetic mean of member above and bellow it. For
the previously given trace we have

1
2
(f1 + f2) +

1
2

[(

p
1

)

+
(

p− 1
1

)]

∆f0 +
1
2

(

p
2

)(

∆2f−1 + ∆2f0

)

+ . . .

To every trace in rhomboid network corresponds one interpolation formula. The trace
for the first Newton interpolation formula is

(7.6.3) f0, ∆f0, ∆2f0, ∆3f0,

Lesson VII - Finite Difference Calculus. Interpolation of Functions. 125

From the numerical point of view, for interpolation of function in point x are convenient
formulas that use information on function values from both sides of point x, what was
not the case with Newton’s formulas.

The survey of more important interpolation formula is given in continuation.
(1) First Newton’s interpolation formula corresponds to the path (7.6.3) with formula

given in (7.6.1).
(2) Second Newton’s interpolation formula corresponds to the path

f0, ∆f−1, ∆2f−2, ∆3f−3,

with formula

fp = f0 +
(

p
1

)

∆f−1 +
(

p + 1
2

)

∆2f−2 +
(

p + 2
3

)

∆3f−3 +

Note that second Newton’s interpolation formula is constructed in point x0 and not
in xn, as previously given.

(3) First Gauss interpolation formula corresponds to the path

f0, ∆f0, ∆2f−1, ∆3f−1, ∆4f−2 . . .

with formula of form

fp = f0 +
(

p
1

)

∆f0 +
(

p
2

)

∆2f−1 +
(

p + 1
3

)

∆3f−1

+
(

p + 1
4

)

∆4f−2 +

(4) Second Gauss interpolation formula corresponds to the path

f0, ∆f−1, ∆2f−1, ∆3f−2, ∆4f−2 . . .

and can be represented in form

fp = f0 +
(

p
1

)

∆f−1 +
(

p + 1
2

)

∆2f−1 +
(

p + 1
3

)

∆3f−2

+
(

p + 2
4

)

∆4f−2 +

(5) Stirling’s interpolation formula corresponds to the path

f0,
(

p
1

)

, ∆2f−1,
(

p + 1
3

)

, ∆4f−2, . . .

and, according to previously given rules can be represented in form

fp = f0 +
1
2
(∆f−1 + ∆f0)

(

p
1

)

+
1
2

((

p + 1
2

)

+
(

p
2

))

∆2f−1

+
1
2
(∆3f−2 + ∆3f−1)

(

p + 1
3

)

+
1
2

((

p + 2
4

)

+
(

p + 1
4

))

∆4f−2 +

Note that the Stirling’s formula is obtained as arithmetic mean of first and second
Gauss interpolation formula.

126 Numerical Methods in Computational Engineering

(6) Bessel’s interpolation formula corresponds to horizontal path

1, ∆f0,
(

p
2

)

, ∆3f−1,
(

p + 1
4

)

, . . .

and has a form

fp =
1
2
(f0 + f1) +

1
2

((

p
1

)

+
(

p− 1
1

))

∆f0 +
1
2
(∆2f−1 + ∆2f0)

(

p
2

)

+
1
2

((

p + 1
3

)

+
(

p
3

))

∆3f−1

+
1
2
(∆4f−2 + ∆4f−1)

(

p + 1
4

)

+

On the figure 7.6.2 are given paths of above given interpolation formulas. For func-
tion interpolation are used most often Stirling’s and Bessel interpolation formulas.
Stirling formula is used when |p | ≤ 0.25, and Bessel for 0.25 ≤ |p | ≤ 0.75.

1 ∆ ∆2 ∆3 ∆4 ∆5

◦ ◦ ◦
↘

◦ ◦ ◦ (2)
↘ ↗

◦ ◦ ◦
↘ ↗

◦ ◦ ◦
↗ ↘

◦ ◦ ◦
↗ ↘

◦ ◦ ◦ (1)
↗

◦ ◦ ◦
◦ ◦ ◦ (4)

↗ ↘ ↗ ↘ ↗
◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦

↘ ↗ ↘ ↗ ↘
◦ ◦ ◦ (3)

◦ ◦ ◦
↘ ↗ ↘ ↗ ↘

◦ ◦ ◦ (6)
↗ ↘ ↗ ↘ ↗

◦ ◦ ◦
◦ ◦ ◦

↗ ↘ ↗ ↘ ↗
◦ ◦ ◦ (5)

↘ ↗ ↘ ↗ ↘
◦ ◦ ◦

Fig. 7.6.2
Some more complex interpolation of functions involving derivatives of functions is

Hermite interpolation (see [1], pp. 51-58).
In the case when one takes for basis function φk trigonometric basis {1, cosx, sin x,

cos 2x, sin 2x, . . .} we have trigonometric approximation. With n+1 = 2m+1 basis functions,
approximation function is trigonometric polynomial of order m

φ(x) = Tm(x) =
1
2
a0 +

m
∑

k=1

(ak cos kx + bk sin kx),

Lesson VII - Finite Difference Calculus. Interpolation of Functions. 127

with approximation parameters 1
2a0, ak, bk, (k = 1, . . . , m). On trigonometric interpolation

and algorithms for trigonometric sums calculation see ([1], pp. 58-69).

7.7. Spline functions and interpolation by splines

Physical device named spline consists of a long strip fixed in position at a number
of points that relaxes to form a smooth curve passing through those points. Before
computers were used for creating engineering designs, drafting tools were employed by
designers drawing by hand. To draw curves, especially for shipbuilding, draftsmen often
used long, thin, flexible strips of wood, plastic, or metal called a spline (or a lath, not to
be confused with lathe). The splines were held in place with lead weights (called ducks
because of their duck like shape). The elasticity of the spline material combined with
the constraint of the control points, or knots, would cause the strip to take the shape
which minimizes the energy required for bending it between the fixed points, and thus
adopt the smoothest possible shape. One can recreate a draftsman’s spline device with
weights and a length of thin stiff plastic or rubber tubing. The weights are attached
to the tube (by gluing or pinning). The tubing is then placed over drawing paper.
Crosses are marked on the paper to designate the knots or control points. The tube is
then adjusted so that it passes over the control points. Supposing uniform elasticity of
spline, one can say that its potential energy, when bent, is proportional to the integral
along it (curvilinear integral along curve) of quadrate of convolution K. Thus, if spline
lies along plane curve y = S(x), a ≤ x ≤ b, its potential energy is proportional to the
integral

(7.7.1)
∫

L

K(x)2ds =

b
∫

a

S”(x)2

(1 + S′(x)2)5/2 dx

and stabilized shape it takes is such that minimizes (7.10.1) under given limitations.
In the similar way is defined mathematical spline, by discarding S′(x)2 in nominator

of (7.7.1), what is close to previous case, when S′(x) << 1. Thus, now is to minimize the
integral

(7.7.2)

b
∫

a

S”(x)2dx.

Mathematical spline can be more generally defined by using higher derivative then two
in (7.7.2).

First results regarding spline functions appeared in papers of Quade and Collatz
([11], 1938) and Courant([12]. In 1946 mathematicians started studying the spline
shape, and derived the piecewise polynomial formula known as the spline curve or
function (Schoenberg [13]). This has led to the widespread use of such functions in
computer-aided design, especially in the surface designs of vehicles. Schoenberg gave
the spline function its name after its resemblance to the mechanical spline used by
draftsmen. The origins of the spline in wood-working may show in the conjectured
etymology which connects the word spline to the word splinter. Later craftsmen have
made splines out of rubber, steel, and other elastomeric materials. Spline devices help
bend the wood for pianos, violins, violas, etc. The Wright brothers used one to shape
the wings of their aircraft.

The extensive development of spline functions and usage of their approximation
properties begun in sixties last century. The splines are greatly applied to numerical
mathematics, in particular to interpolation, numerical differentiation, numerical inte-
gration, differential equations, etc. The extremal and approximative attributes of so
known natural cubic spline is given in [1], pp. 81-86.

128 Numerical Methods in Computational Engineering

Let on segment [a, b] given network of nodes

(7.7.3) ∆n : a = x0 < x1 < . . . < xn = b.

Denote with Pm set of algebraic polynomials of order not greater than m.

Definition 7.7.1. Function
Sm(x) = Sm,k(x, ∆n)

is called polynomial spline of degree m and defect k (1 ≤ k ≤ m) with nodes (7.7.3), if satisfies the
conditions

10. Sm ∈ Pm on every subsegment [xi−1, xi] (i = 1, . . . , n),
20. Sm ∈ Cm−k[a, b].

Points xi are called nodes of spline.
We will further consider polynomial splines of defect 1 and for Sm(x) = Sm,1(x) say

to be a spline of degree m. Very important kind of splines, interpolation cubic spline,
with m = 3 will be special considered. Therefore we join to the network nodes ∆n real
numbers f0, f1, . . . , fn.

Definition 7.7.2. Function S3(x) = S3(x; f) is called interpolation cubic spline for function f on the
net ∆n (n ≥ 2) if the following conditions are fulfilled:

10. S3(x, f) ∈ P3 if x ∈ [xi−1, xi] (i = 1, . . . , n),
20. S3(x; f) ∈ C2[a, b],
30. S3(xi; f) = fi = f(xi) (i = 0, . . . , n).

We see that condition 30 does not appear in Definition 7.7.1. The spline defined in this
way is called simple cubic spline. It interpolates function f in network nodes (condition
30), it is continuous on [a, b] together with its derivatives S′3(x) and S′′3 (x) (condition 20)
and defined on every subsegment between neighbor nodes with polynomial of degree
not greater than 3. So, the third derivative of cubic spline is discontinuous, being, part
by part of constant value.

Cubic spline has two free parameters, determined usually by some additional contour
conditions. The typical ones are:

(7.7.4) S′3(a) = S′3(b), S′′3 (a) = S′′3 (b);

(7.7.5) S′3(a) = an, S′3(b) = bn;

(7.7.6) S′′3 (a) = An, S′′3 (b) = Bn;

(7.7.7) S′′3 (x1 − 0) = S′′3 (x1 + 0), S′′3 (xn−1 − 0) = S′′3 (xn−1 + 0),

where an, bn, An, Bn are given real numbers.
Conditions (7.7.4) define so known periodic spline. These conditions are used when,

for example, interpolating function f is periodic with period b− a.
If function f is differentiable and we know values of derivatives in boundary points

a and b, then the additional conditions (7.7.5), an = f ′(a) and bn = f ′(b), or (7.7.6),
An = f ′′(a) and Bn = f ′′(b), are to be used, what is often case at mechanical models. The
corresponding spline is called natural cubic spline.

The conditions (7.7.7) are most complicated, but they obtain continuity of third
derivatives of spline in points x = x1 and x = xn−1.

Lesson VII - Finite Difference Calculus. Interpolation of Functions. 129

The most interesting spline approximation is cubic spline interpolation. The algo-
rithm for construction of cubic spline is given in ([1], pp. 73-81). To interested reader
is suggested to write a code for construction of spline (taking care of Hermite interpo-
lation) and, if possible, include graphical interface (see Assignment-vii on GAF site).
For some programming details, see Fortran subroutines Spline and Splint in ([5], pp.
109-110). For obtaining a higher order of smoothness in two-dimensional interpolation
(applicable in many areas of engineering, and specially in computer graphics), one can
use bicubic spline and code given in ([5], pp. 120-121.)

7.8. Prony’s interpolation

Dating from 1795, Prony’s interpolation ([14]) is often known as Prony’s exponen-
tial approximation, and until nowadays not applied as it by its sophisticated nature
deserves. It is suggested to students and readers to apply the following formulas in de-
veloping algorithms for programming of Prony’s method. Some benchmarking research
for comparison of application of this method, cubic spline, and, for example, least square
method to some physical problems is also strongly encouraged.

If we have interpolation function of form

f(x) ∼= c1ea1x + c2ea2x + · · ·+ cneanx

= c1µx
1 + c2µx

2 + . . . + cnµx
n,

where µk = eak . If function f is given on set of equidistant points {(xk, fk)}k=0,1,...,2n−1, and
xk − xk−1 = h = const (k = 1, 2, . . . , 2n− 1), by replacing x = x0 + kh data set can be replaced
by {(k, fk)}k=0,1,...,2n−1, where x = 0, 1, . . . , 2n− 1. By setting interpolation problem

Φ(k) = fk (k = 0, 1, . . . , 2n− 1),

we get the system of equations

(7.9.1)

c1 + c2 + . . . + cn = f0

c1µ1 + c2µ2 + . . . + cnµn = f1

c1µ2
1 + c2µ2

2 + . . . + cnµ2
n = f2

...
c1µN−1

1 + c2µN−1
2 + . . . + cnµN−1

n = fN−1.

If µ’s are known and N = n, system (7.9.1) is to be solved as system of linear equations,
and if N > n by least squares method (see next chapter).

If µ’s are to be determined, we need at least 2n equations, but we have system of
nonlinear equation, which, as we know, in general case could be unsolvable. Therefore,
we can assume that µ’s are the roots of algebraic polynomial of form

(7.9.2)

µn + α1µn−1 + . . . + αn−1µ + αn = 0,

i.e
(µ− µn)(µ− µn−1) + . . . + (µ− µ1) = 0.

By multiplying all equations in (7.11.1) by αn, αn−1, . . . , α1, 1, we get the system

(7.9.3)

f0αn + f1αn−1 + f2αn−2 + · · ·+ fn−1α1 = −fn

f1αn + f2αn−1 + f3αn−2 + · · ·+ fnα1 = −fn+1

...
fN−n−1αn + fN−nαn−1 + fN−n+1αn−2 + · · ·+ fN−2α1 = −fN−1.

130 Numerical Methods in Computational Engineering

If determinant
∣

∣

∣

∣

∣

∣

∣

∣

f0 f1 · · · fn−1

f1 f2 · · · fn
...

fn−1 fn · · · fN−2

∣

∣

∣

∣

∣

∣

∣

∣

6= 0,

the solution of system (7.9.3) is unique. If N = 2n we get system of linear equations (7.9.3),
and if N > 2n we solve this system by least squares method.

7.9. Packages for interpolation of functions

Many libraries and software packages are available for interpolation and extrapo-
lation of functions. Many workstations and mainframe computers have such libraries
attached to their operating systems.

Many commercial software packages contain algorithms and programs for interpo-
lation. Some of more prominent packages are Matlab and Mathcad. Some more sophisti-
cated packages, such as IMSL, MATHEMATICA, MACSYMA, and MAPLE, also contain routines for
polynomial interpolation and approximation of functions. The book Numerical Recipes
[5] contains a routines for interpolation (See chap. 3, Interpolation and extrapolation),
and the book Numerical Methods for Engineers and Scientists ([2]) program code for
difference formulas and numerical differentiation. For demands on interpolation in two
or more dimensions, higher order for accuracy, and higher order of smoothness (bicubic
interpolation, bicubic spline) see code in ([5], pp. 118-122).

Bibliography (Cited references and further reading)

[1] Milovanović, G.V., Numerical Analysis II, Naučna knjiga, Beograd, 1988 (Serbian).
[2] Hoffman, J.D., Numerical Methods for Engineers and Scientists. Taylor & Francis,

Boca Raton-London-New York-Singapore, 2001.
[3] Milovanović, G.V. and Djordjević, Dj.R., Programiranje numeričkih metoda na

FORTRAN jeziku. Institut za dokumentaciju zaštite na radu ”Edvard Kardelj”,
Nǐs, 1981 (Serbian).

[4] Stoer, J., and Bulirsch, R., Introduction to Numerical Analysis, Springer, New York,
1980.

[5] Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical Re-
cepies - The Art of Scientific Computing. Cambridge University Press, 1989.

[6] Karlin,S. and Studden, W.J., Tchebyshev Systems With Applications in Analysis
and Statistics. Interscience Publishers, New York, 1966.

[7] Milovanović, G.V. and Kovačević, M.A., Zbirka rešenih zadataka iz numeričke anal-
ize. Naučna knjiga, Beograd, 1985. (Serbian).

[8] Goertzel, G., An algorithm for the evaluation of finite trigonometric series. Amer.
Math. Monthly 65(1958).

[9] Cooley, J.W., Lewis, P.A.W, Welch, P.D., Historical notes on the fast Fourier trans-
form. Proc. IEEE 55(1967), 1675-1677.

[10] Cooley, J.W., Tukey, J.W., An algorithm for the machine calculation of complex
Fourier series. Math. Comp. 19(1965), 297-301.

[11] Quade,W. and Collatz, L., Zur Interpolationstheorie der reellen periodischen Funk-
tionen. S. -B. Preus. Akad. Wiss. Phys.-Math. Kl. 30(1938), 383-429.

[12] Courant, R., Variational methods for the solution of problem of equilibrium and
vibrations. Bull. Amer. Math. Soc. 49(1943), 1-23.

[13] Schoenberg,I.J., Contributions to the problem of approximation of equidistant data
by analytic functions. Quart. Appl. Math. 4(1946), 45-99; 112-141.

[14] Prony, R. De, Essai expérimentale et analytique... J. Ec. Polytech. Paris 1(2) (1795),
24-76.

Lesson VII - Finite Difference Calculus. Interpolation of Functions. 131

[15] Ralston,A., A First Course in Numerical Analysis.
McGraw-Hill, New York, 1965.

[16] IMSL Math/Library Users Manual , IMSL Inc., 2500 City West Boulevard, Houston
TX 77042

[17] NAG Fortran Library, Numerical Algorithms Group, 256 Banbury Road, Oxford
OX27DE, U.K., Chapter F02.

